AD=A103 786 JOHNS HOPKINS UNIV BALTIMORE MD DEPT OF ELECTRICAL ==ETC F/8 9/8
RELIABLE SUITCHINC CIRCUITS FOR NAVAL COMMUNICATIONS,(U)
1981 @ M MAS! NO 001“-15-(:-1196

UNCLASSIFIED

SHDUR Y ety vt = e et o o e e+t e gy Pt |

? \ | V) ,K |
N
ST - THE

S 2 M
e I 7 L R
i e al Sl |
fe L
i s w
| H
i

JOHNS HOPKINS
UNIVERSITY

ELECTRICAL ENGINEERING DEPARTMENT

REPORT

RELIABLE SWITCHING CIRCUITS
= T 7

HAVAL CONNICATIONS | ,
v

| 11)198)
_GERALD N Masson
DEPARTMENT-OF ELECTRICAL ENGINEERING @ﬂ

6, M.L. W4ITING ScHOOL OF ENGINEERING
THE JoMNs HoPkINs UNIVERSITY

BALTIMORE, MarvLAND 21218 DTIC ~
E‘LECTEn]
SEP 4 1981 :
SUPPORTED BY @_\j 4
Omce of NAVAL ReseArcH CONTRACT le&-75-%190
Cope 430 R 048-630

-y yeY]
81 8 07 005]

[DISTRIRUTION STATEMENT A

Approved for public release)
Distribution Unlimited

o

1 Accession For

R TETIS Raer W T
X - DTIC TAB o HE .

Unannounced |

EJ”“’ Ei JOHNS HOPKINS

»{ Distribution/ : "“””

PR — '
Avauab_u}_t_v Codes UN'VERS'T
Avail and/or 1

. ipist Special

: R e

1 S
« .. . -] l,‘.r;.
1 IR 2
K . E .
3o) a5
! : K , B : },ﬁl..
. - 8
: R x LA
. Cae K W
‘. - P -
3 M . . E ”n,
: . &y
' : : ;
‘ . l. " !§ . A—‘,‘<
13'4

dECTRCAL poNEERND ﬁ%fm e

o,

ha : f‘"
REU:RBLE AR

NAVAL cmwumm‘nons R

e GERALD n, MAssow L TR T R
DEPARTMENT oF ELECTRICAL ENGINEERING 8 S
* G.Mafls WHITING ScHoOL OF ENGINEERING R {
S w7 THE Jouns HopKINS UNIVERSITY
“fo ot BaLFIMORE, MARYLAND 21218

SupéonTED BY
OFFICE oF NAvAL ResearcH CoNTRACT NO0014-75-C1196

Cope 430 NR 048-630 ’)&l{u/

1 8 (.‘ ‘

Ap(pxoved for public release;
Dlsmbuhon Unlimited

Resolution-Oriented Fault Interrelationships in
Combinational Logic Networks

VINOD K. AGARWAL AND GERALD M. MASSON

Abstract—This correspondence considers fault resolution as
a process of applying a sequence of input vectors, called tests, toa .
combinational logic network in order to resolve an existing fault !
situation from within a given master set of faults. A functional
approach based upon an extension of the well-known Boolean
difference concept to fault dependent situations is described. The

Manuscript received February 23. 1976; revised June 1, 1976. This work was
supported in part by Office of Naval Research Contract Ni0014-75.C-11%

The suthors are with the Department of Electrical Enginecring. The Johne
Hopkins University, Ballimore, MI) 21218

e

-

OPERATION

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 1}, NOVEMBER 1977

«@— TIME - h TIME ——»

Focus number system

(

—

Fized point number system

(integer)

Ne =

S—

7 & d

—30%
-<——':~——Focus
+——F|goting point
1 ‘ea-Fixed point

=20%

‘
.
L)
[y
I3 A3 z
R &
K ”
.
"
.

- 10%

NOND ——P

jaemmsacmesmenoan®

)

Fig. 2. Comparison of execution times between the focus number sysu;n and an integer system.

30%—

20% —

0%~

- or . -+ 1 -]
001 Ee | J

number represented ——

—-J-'-

ﬁ ° -
10 100 1000

Fig.3. Comparison of accuracy among the focus, fixed-point, and floating-point

number systems.

raising a number to a noninteger power is performed essentially
like a single multiplication in the prior art, and the wide range
of possible states can represent very large or very small answers.
The difficult but useful square-root function is extracted in focus
simply by shifting right 1 bit, then adding 0 1000.000.

V. CoMPARISON OF FOCUS TO THE PRIOR ART

Fig. 2 is a qualitative comparison of execution times between
the focus-number system and an integer system requiring soft-
ware multiplication. Exact execution times are a function of many
things (for example, inclusion or exclusion of optional steps and
facileness of the machine language); however, overall it is ex-
pected that the focus-number-system algorithms will perform
a mixture of calculations about five times faster in a microcom-
puter than a prior-art fixed-point (integer) system using software
multiplication. This estimated number does not include the time
savings expected by using single instead of double precision, as
is allowed by focus in certain applications. Software floating-
point times are not shown, but this would be slower than fixed-
point arithmetic.

Fig. 3 is a quantitative comparison of accuracy among the
focus. fixed-point (integer), and floating-point number systems,
in which all are normalized to 8-bit bipolar systems. The error
figure given is the maximum relative error in the region around
any given number represented. This is half the step size, and is
"3 times the root-mean squate error in that region. In this ﬁgure
the fixed-point system is seen to be the most accurate system in
a narrow range between very large and very small numbers. It is
thus useful in processing a well-behaved signal for which the
virtual ground concept of focus control or the wide range of the
focus system are not required, and where speed is not important.
Integer arithmetic is also superior in certain operations involving
chain addition, such as a program counter. The floating-point
system inefficiently crowds states when the mantissa is large,
leaving sparsely covered regions of high error scattered across the
number line. Base ten was chosen for comparison. A larger base
would result in wider oscillations and a smaller base would result
in a higher average error due to redundant states; for example,
base two would have a 50-percent state redundancy resulting in
an average near the 10-percent error line. Floating point, although
very slow without a costly arithmetic unit, is attractive in large

computers of over 16 bits for which the lookup table of focus
becomes impractically long. If a direct hardware implementation
of the focus table is found, floating-point arithmetic will be se-
riously challenged in all applications.

V1. CONCLUSION

It is concluded that, for a fixed word length, Focus is superior
in accuracy to floating-point arithmetic in all cases and to fixed
point (integer) in many cases, especially including control systems
for which the sensing control signals can be reduced by differ-
ential inputs or other analog means into forms that approach zero
as the system approaches the desired controlled state.

REFERENCES
[1] T.C. Bartee, Digital Computer Fundamentals. New York: McGraw-Hill, 1972,
ch. 3.
12] G. A Mnle\ and M. F. Heilweil, Introduction to Digital Computers
Cliffs, NJ: Prentice-Hall, 1968, ch. 7.

13) S. C. Lee, Digital Circuits ond Logic Design. Englewood Cliffs. NJ: Pren-
tice-Hall, 1976, ch. 2.

Englewund

Resolution-Oriented Fault Interrelationships in
Combinational Logic Networks

VINOD K. AGARWAL AND GERALD M. MASSON

Abstract—This correspondence considers fault resolution as
a process of applying a scquence of input vectors, called tests, tos
combinational logic network in order to resolve an existing fault
situation from within a given master set of faults. A functional
approach based upon an extcnsion of the well-known Roolean
difference concept to fault dependent situations is described. The

Manuscript received February 23, 1976; revised June 1, 1976 This wark was
supported in part by Office of Naval Research Contract NOO014-75.C- 1196

The suthors are with the Depsrtment of Electrical Engineering. The Johne
Hopkins University, Baltimore. MD 21218,

A e A A8t et s

T(Fu) ={X]ZIX:Ym) ® 2| X;ap) = 1) (1)

In words, for every X € T(Fy), Z[X;Y)] is different than the
output of the faulty network, Z{X;ay]. Thus, when any test
X € T(Fp) is applied to a network, if the Boolean output of the
network is different than the Boolean value of the output func-
tion describing the fault-free network, we say the network has
failed the test; otherwise we say the network has passed the
test.

Clearly, the test set T'(Fy) is based on comparing the operation
of a faulty network with that of a fault-free network. However,
in order to characterize the fault interrelationships germane to
the fault resolution process, it will be necessary to compare the
operations of the network under two fault conditions. Thus, as-
sume that fault condition F, is known to exist in N, and we are
to determine a complete test set for detecting F; in network N
with F,; present. We will refer to such a test set as a fault de-
p:ndent test set, and denote it as T'(Fj|Fy). It should be clear
that

T(F)|F)) = (X|Z[X: Yool ® Z[Xianay] = 1. (2)

Note that such a test is based on a fault dependent Boolean
difference which only gives valid results for the network if, in-
deed, this assumed fault F, exists in the network. Also note that
in applying a fault dependent test, the operation of fault-free
network is not of concern, and the conclusion as to whether or not
the network has failed or passed the test must take this into ac-
count. OQur convention for this will be the following. For a test X,
€ T(F;]F), let the logical value of the Boolean expression Z| X ;
Y7.a,) bea, a € 10,1). Now, if the output of the network when this
test is applied is @, we say the network has failed the test; oth-
erwise we say the network has passed the test.

A fundamental interrelationship which exists between fault
dependent test sets and standard test sets is described in the
following theorem.

Theorem 1:

T(F;|Fy) = T(F,) ® T(F; U F,).

Proof: Since Z|X;Y,,Y,] ® Z{X;Y;,Y,;) = 0, itis clear from
(2) that T(F;|F;) = {X(Z[X;Y1,a,y) ® Z|X;0a;,04)) ® (Z|X;
Y, Y/ @ ZIXY,uh =1
However, by simply rearranging the above equation, we ob-
tain

T(F1\F,) = X |(Z|X;Y1,a4]) ® Z[X;Y),Y,))
® (Z{Xsa,a4] @ ZIX;YLY,)) = 1)

or
T(F;)F)) = T(F;) ® T(F, U F,). Q.E.D.

Example 1’: To illustrate the abave, consider the network of
Fig. 1. Suppose M =]1,23,5. Let I = {1,2} and o = ay,a0} = {1,1},
and let J = 13,5] and ay = laz.as) = 10,1}. It can be seen that Z|X;
Y] = (Yaxe+ Y)Yy + (Yax g+ Y (Y5 + x3). Suppose now that
F; is known to exist in the network, and we want to determine
whether F; also exists. By using (2), we get

T(FI|F)) = {(X|Z[X:Yay] © Z|X;ar,04] = 1
= IXI.TC'] Xg = 1,

We now choose, say, X, = (0000) € T(F;|F,) and then determine
that Z|X,:Y;.ay] = 0. Now if we apply X, to the circuit con-
taining F, the output would be 8 I if F; were present and a 0
otherwise. Also note that since T(F; { F;) = {X |32+ x1x0x5x,
+ ;2;314 = ” and T‘FJ) = 'Xll’)igf;,14 + X)1XoXaXyq = “. b_\'
Theorem 1, we have T(F;|Fy) = T(F,) ® T(F; U F,;) = {X|x)%2
= 1.

' Fig. 1 is taken from Ku and Mas<on |1)

’faiD—l

Fig.1. Z[X:0] =T 324 2.Ta34 4 1 T33+ 11T,

The fault dependent test set will be seen in the following sec-
tion to be fundamental to the characterization of the resolu-
tion-oriented fault interrelationships. Theorem 1 then indicates
a straightforward means by which standard testing information
can be used to consider the existence of such fault interrela-
tionships in actual situations. However, Theorem 1 also gives
significant insight into the concept of a fault dependent test, as
it indicates that there are really two types of fault dependent
tests: one type of which seems reasonably satisfying intuitively,
the other of which seems significantly less so. To illustrate this,
let X, € T(F;|F,) and let the output of the fault-free network
with X, applied to it be Z{|X,;Y,,Y,] = 1. Now, we will consider
the following two cases.

Case I: Let X, be such that Z[X,;Y;,ay] = 1 and

Z{Xyapay) = 0.

Since X truly tests [in the sense of (1)] for F; \J F,; while not
testing for F,, this test seems to agree with what could be natu-
rally accepled as a fault dependent test for F; in the presence of

J-
Case 2: Let X, be such that Z[X,;Y;,ay] = 0 and
Z|Xy;ay,a4) = 1.

However, in this case, since X is a test which does not take into
account the effect of the fault F; relative to the fault-free net-
work, such a test is intuitively less satisfyving. It is this interesting
aspect of a fault dependent test, however, which makes it a
powerful tool in fault resolution considerations. Note that by
Theorem 1, any fault dependent test is always one of the above
two types.

IV. RESOLUTION-ORIENTED FAULT INTERRELATIONSHIPS

There exists an inherent limit 10 the degree to which a fault
situation can be resolved within a master set, and this limit de-
pends upon the fault interrelationships which exist among the
faults within this set and the knowledge regarding the existing
fault situation which has thus far been attained. By means of the
results of the previous section, we are now able to characterize
pertinent fault interrelationships which describe these limita-
tions. To do so, we will consider the master set of faults Fay. and
then describe the fault interrelationships between subsets of
faults within this master set, say, F; and F,,. Note that it is not
necessary that F; U Fy = Fa,.

Our characterizations of these resolution-oriented fault in-
terrelationships will be given by means of the fault dependent
Boolean difference. Hence, we will immediately have algebraic
formulas with which to verify whether these conditions actually
exist within a network for some subsets of a given master set of
faults.

CORRESPONDENCE

Definition 1: F,; completely masks F), denoted F, 5 F). if and
only if T(F;|F,) = 8, where @ denotes the empty set.

In words, we say that fault situation Fy completely masks F
if and only if it is not possible to detect F; when it is known that
F, exists in the circuit.

Friedman (7], Hayes [8], Gault et al. [9), and Wang [10] among
others have reported on a masking relationship among faults,

" which we will refer to in the following as classical masking. Given

F1.F) U Fu,T(F)), and T(F; U Fy), if for some test X; € T(F)).
we have that X, ¢ T(F; U F,), it is said that F; classically masks
F; relative to the test, and if this is true for all X € T(F;) we then
say that F; classically masks F. Clearly, this is not equivalent

- to saying that F; completely masks F}, since it is still possible

that the fault conditions F; and F; (U F, can be distinguished.
Since classical masking describes a situation where tests for F;
are rendered useless by the addition of F; to the fault condition,
classical masking might be more accurately described as test set
nullifying, and in the following we will denote this classical
masking relationship as Fy 5 F}.

The concept of complete masking has also been suggested by
Cha and Metze [12]. They, however, choose to refer to it as m-
covering. They then couple this m -covering concept with test set
nullifying, and refer to that resulting concept as masking.

Example 2: To illustrate the above, consider the network of
Fig. 2. Let I = 15,6} and a; = las.a¢} = [0,1}, and let J = {13} and
ay = {a1a} = {0}. It can be seen that T(F) = |X|x,x0 @ X355 = 1}
and T(F; U Fy) = {X|x,x2 @ 2314 = 1). Since T(F/) N T(F, U,
Fy) = @, it is clear that F; § F,. However, by Definition 1,
T(F1}F) = {X)x1x033x4 = 1} # 0. Hence F, §} F;. Thus, if it were
known that F, existed in the network of Fig. 2, it would still be
possible to determine whether F; also existed. For example, if we
applied the fauit dependent test X = (1100) to the network
containing F,, the output would be a 0 if F; also were present,
and a 1 otherwise. It should be noted that the fact that F, 3 F;
does not necessarily imply that F; 3 F,. Hence, although the
concept of complete masking is an indication of a limit to which
resolution can be achieved with algebraic terminal experiments,
it should also now be clear that any such resclution testing must
take into account more than just one-way masking interrela-
tionships before definite conclusions concerning the existing fault
situation within the master set can be made. The next fault in-
terrelationship to be described moves further in that direc-
tion.

Definition 2: Fy is unresolvable from F, denoted F; 7 F,, if
and only if T(F(|Fs) = T(F |F:) = 0.

In words, we say that fault situations F; and F, are unresolv-
able if it is not possible to detect F; in the presence of F, and if
it is not possible to detect F, in the presence of Fj.

The concept of unresolvability might seem to be similar to
McCluskey and Clegg's concept of functional fault equivalence
[11]. The differences between the two concepts are a result of the
standard testing and fault detection (to which functional
equivalence relates) and fault dependent.testing and fault reso-
lution (to which unresolvability relates) considerations, as will
now be shown. Given the faults F; and F, if Z[X;a,,Y,] =
Z[X:Y1,ay] it is said that the two faults are functionally equiv-
alent, denoted F; ~ F,. Itis clear that Fy ~ F,; if and only if T'(F))
= T(F,). But using the definition of unresolvability and Theorem
1, we have that F; § F, implies that

T(F)\Fy) = T(Fy|F)) =@

or

T(F) ® T(5; U Fy) = T(F)) @ T(F; U FJ) = 8
which implies
T(F)) = T(Fy) = T(F; \J F;).

Thus, the functiona) equivalence of two fault situations is a

nn

necessary but not sufficient condition for the unresolvability of
those fault situations.

Example 3% To illustrate the above, consider the circuit of Fig.
3,andlet M =11,2,56},] =12,6),J = 11,5, 0 = [0,)}, and a, = {1,0}.
Since Z|X;a;,Yy) = Z[X;Y1,a4] = x2x3, we have that F; ~ F;.
However, note that T(F,|F;) = {X|x2x3 = 1}, and therefore, these
two double faults are resolvablé. In other words, if it were known
that the fault F; were in the circuit, then if we applied X; =
(0110) to the circuit, the output would be a 0 if F; also existed and
a1 otherwise.

In the remainder of this section, we will give some useful re-
marks involving unresolvability, functional equivalence, complete
masking, classical masking (test nullifying), and fault dependent
testing. These remarks are intended to make more salient certain
important features of our fault interrelationships.

Remark 1: Given the three fault situations F;, F,, and Fg:

a) Fy~F; QF,ifandonlyif F; ¥ F; U F,.

b) TFiI\F1 U Fy)=TFHNF U Fy) =0

c) T(FU FJIFK) = T(FJIFK) e T(F]'FJ U Fg).
d) T(F[IFJ) ® T(FJIF]) = T(F;) @ T(Fy).

The proofs of these follow directly from Theorem 1 and the
definitions of this section. Remark 1a) gives the conditions under
which functional equivalence and unresolvability are identical
interrelationships. In other words, if two fault situations are
equivalent, and one of these fault situations is a subset of the
other, then those two fault situations are unresolvable. Remark
1b) asserts that it is not possible to test for a subset of a specified
fault situation when it is assumed that, indeed, the entire speci-
fied fault situation exists in the circuit. Remark 1c¢) is useful in
simplifying expressions involving fault dependent tests such that
all such tests are in the form of (2) wherein the assumed fault
situation and the tested for situation are disjoint. For example,
to determine T(F; U Fy|Fy U FL) we can use this Remark 1c).
Letting K = J U L, and noting that

T(Fr U F)\Fy UFL) =T(Fy|F, UFL)® T(F)|Fy UFL)
= T(F;|Fy U Fyp),

since, by Remark 1b), T(F,)F; U F.) = @. Finally, Remark 1d}
indicates a relationship which exists between fault dependent
test sets and the composing fault test sets which does not involve
the composite fault test set. This Remark 1d) makes apparent
an interesting property of redundancy. Suppose, for example,
that F; and F, are redundant fault situations. Then T(F,;) =
T(F,) = §. By Remark 1d) this means that T(F; |F;) = T(F4|F}),
and, if these two fault dependent test sets are not empty, the
composing, redundant faults are resolvable in that it is possible
(with the same tests) to detect either of the redundant faults in
the presence of the other. This is, then, an algebraic assertion of
a fault phenomena first noted by Friedman [7].

We will now consider the connection between complete
masking and classical masking or test set nullifying. We know
thatif F; § Fy, then T(F;) N T(F; U F) = ¢. But from this it
is clear that T(F;) @ T(F; U F,;) # @. Hence, we have that F; §
F) implies that F; % F,. In other words, if F, classically masks
F), then F; does not completely mask F;. This can be extended
further by noting that if we have that F; § F; and Fy ;¥ Fy, then
clearly F) 5 F.

The above result significantly indicates the difference of the
fault interrelationships which are pertinent to fault detection and
fault resolution. In terms of fault detection if two fault situations
classically mask each other, they form what is referred to as an
undetectable fault set [9] in that the composite faut situation
cannot be detected with tests from the test sets for either of the
composing fault situations. However, we have seen here that in

2Fig. 3 and Example 3 are taken from Cha and Metze (12].

m—

Ol

{
xy ,L—J——-f'\l i
N

Fig.3. Z|X#) = xyx2xa 4 29x3%4.

terms of fault resolution, these two fault situations are then re-
solvable. This is summarized in the following.
Remark 2:
a) Fy FyjandF; 5 FyimpliesF; g F,.
b} F; 5 Fsand F; 3 F;implies F; ¢ F,,.

V. FAULT INTERRELATIONSHIP RAMIFICATIONS

Whenever a test, standard or fault dependent, is applied to a
network, the information contained in the outcome of that test
is, in gereral, quite limited in terms of fault resolution. For ex-
ample, i we determine, say, T(F;) for F}, applyva X, € T(F;) to
the network, and observe that the network fails the test, we can
only conclude that, indeed, the network is faulty. Similarly, if the
network passes the test, we can only conclude that F) is not
present. Analogous statements could be made for fault dependent
- testing. Therefore, in order to logate or resolve the existing fault
in a network, a sequence of tests must necessarily be applied.
However, even with the application of a sequence of tests, a point
will be reached where further resolution is not possible. We are
considering in this correspondence an approach to fault resolu-
tion based on algebraic terminal experiments. For a set of master
faults in a network and using this approach, the limit of resolution
which can be attained is dependent upon the type of test used and
the existing fault interrelationships within the master set. It
should be clear that higher resolution is possible if fault depen-
dent testing is used instead of standard testing, since fault de-
pendent testing takes into account fault situation information
not utilized by standard tests. In the following we will specify the
limits of resolution attainable with fault dependent testing in
terms of the fault interrelationships which were characterized
in the previous section. It will be seen that in terms of resolution
limits: unresolvability is to fault dependent testing as functional
equivalence is to standard testing.

Suppose that in a network, we have that the existing fault in
either Fy, F, or F; \U F;. Now, suppose further that F; § F ;. We
recall from the previous section that this implies that T(F;) =
T(F,) = T(F; U F,). This means, then, that if we applied stan-
dard tests for Fy, Fy, or Fy U F . we could not resolve the fault
situation. However, suppose further that by some means it were
possible to either inject F; in the network or sense that, indeed,
F; existed in the network, or to inject F, in the network or sense
that, indeed, F existed in the network. Regardless, it would still
not be possible even with fault dependent testing to resolve the
fault situation further since F; § F,. However, if we instead
suppose that F; ~ F;, but where F, i F;. and we again had some
means of externally probing or sensing conditions in the network
on the lines of] or J, then in this case it may be possible, in gen-
eral, to further resolve the existing fault situation since the im-
plication of functional equivalence is simply that T(F;) = T(F,)

i ——

TEEE TRANSACTIONS ON COMPUTEKS, VOL € 26, NO. 1}, NOVEMBEKR 1977

T(F) U F.,). Hence, unresolvability can be considered to be
an interrelationship among faults which limits the degree of
resolution which can be attained when testing is performed with
more information regarding the existing fault situation than is
generally used with standard test set approaches. Hence, the
paralle] between functional equivalence/standard testing and
unresolvability/fault dependent testing is clear.

1t might be noted here that, indeed, if we did have some ex-
ternal means of injecting faults into the network on, say, some
lines K of the circuit, and we had the case that F; § F, but that
Fr 'y Fy, and Fy; § F), then we could resolve the fault situation
further. As an illustration of this, consider the following.

Example 4: It can be observed in the network of Fig. 1 that if
I ={5}and a; = {as} = 11}, and J = |9} and a, = lag} = {1}, then F;
% F;. Thus, even if it were possible to inject one of these two
faults, say, F, it is easily seen here that it still would not be
possible to determine whether F; also existed in the network.
However, if we could inject some other fault, say, Fx, K = {13i,
ak = jaygl, = |0}, thensince Fx 5 F.;, and Fi 3 F;, applying the
input combination (1111) € T(F;|Fx) we can now test for the
fault Fy.

A complete treatment of this idea of enhancing resolvability
by means of external lines to the network which can be used to
inject fault situations is beyond the scope of this paper. However,
it seems that the functional approach to fault interrelationships
being utilized in this correspondence makes clear the criteria
which must be satisfied for the design of highly resolvable net-
works.

VI. CONCLUSION

In conclusion, we have presented in this correspondence a
characterization of fault interrelationships which limit the res-
olution of a fault situation from within a master set of faults when
we have certain information about that fault situation which
allows us to do fault dependent testing instead of standard
testing. This has been done by means of an extension of the
Boolean difference to fault dependent situations. It should be
clear that unresolvability, the main interrelationship of this
characterization, is really onlv another point on a spectrum of
fault interrelationships which is increasingly being seen to be of
significance in fault analysis. Certainly, this spectrum will be
worthy of future research.

ACKNOWLEDGMENT

The authors wish to thank Prof. G. Metze of the Department
of Electrical Engineering and the Coordinated Sciences Labo-
ratory of the University of INinois at Urbana-Champaign for
suggestions, criticism, and discussion regarding this work.

REFERENCES

{1} C. T. Ku and G. M. Masson, “The Boolean difference and multiple fault
analysis,” IEEE Trans Comput., vol. C.24, pp. 62-71, Jan. 1975.

{2] A. Thayse and M. Davis, “Boolean differential calculus and its application
to switching theory,” JEEE Trans. Comput., vol. C-22, pp. 403-420, Apr.
1973.

13} S.8. Yauand Y. S. Tang, "An efficient algorithm for generating complete test
sets for combinational logic circuits,” JEEE Trans. Camput., vat. C-20, pp.
1245-1251, Nov. 1971,

|4) F. F. Sellers. M. Y. Hsiao, and L. W. Bearnson, *“Analyzing errors with the
Boolean difference,” JEEE Trans Comput., vol. C-17, pp. 676-683. Juh
1968.

{5} A.C.L.Chiang.1.S. Reed, and A. V. Banes, 'Path sensitization, partial Bou.
lean difference, and automated fault diagnusis,” JEEE Trans. Comput . vol
C-21, pp. 189-195, Feb. 1972,

{6} S. B. Akers. Jr., “On the theory of Boolean functions,” SIAM J. Appl Math .

- vol. 7, pp. 487498, 1959.

{7) A.D.Friedman, “Fault detection in redundant circuits.” IEEE Trans Elec.
tron Comput., vol. EC-16, pp. 92-100, Jan 1967,

.

1059

CORRESPONDENCE

An Efficient Fault Diagnosis Algorithm for Symmetric
Multiple Processor Architectures

GERARD G. L. MEYER anp GERALD M. MASSON

Abstract— A new diagnosis algorithm for determining the existing
fault situation in a2 symmetric multiple processor architecture is
given. The algorithm assumes that there are n processors, each of

Manuscript received January 5. 1977 revised May 17. 1977 and August 29, 1977
This work was supported by the Office of Naval Research under Contract NR 048

630
The authors are with the Department of Elecincal Engineenng, The Johns Hop-

kins Umiversity, Balumore. MD 21218

0018-9340 78/1100-1059500.75 © 1978 1EEE

e G

o e e e o

TR ———"

1060

which is tested by at least t other processors, and at most 1 of which
are faulty. The existing fault situation is always diagnosed if
n 2 2t + 1 and, in some cases, can still be diagnosed if n < 21 + 1.
The implementation of the algorithm is straightforward and suitable
for microprocessor applications.

Index Terms—Diagnosis algorithm, fault syndromes, micro-
‘processor, modular networks.

INTRODUCTION

Consider a general model of a multiple processor architecture
consisting of n digital modules denoted Uy, U,, -+, U,_, and
some associated interconnection design denoted D, ,. These mod-
ules, for example, could be n processors implementing a seg-
mented algorithm [6] Regardless of the use of the multiple
processor architecture, we will assume that each U, is capable of
testing the other U’s to which it is directly connected for some
specified class of faults. If a module contains any such fault, we
will refer to it as faulty. The problem we will study in this paper is
the diagnosis of an existing fault situation among the modules
given their respective testing results. This problem is not new and
has been examined elsewhere in the literature (1), [3], [4). [5). [7).
[8] The results to be presented here represent a new approach to
such diagnosis. In particular, the diagnosis procedure described
will be secen to be sufficiently straightforward to be easily im-
plementable on a simple processor, ¢.g., a microprocessor, and for
a proper interconnection design among the processors and upper
bound on the number of simultaneous faults which can occur, will
always yield the correct diagnosis of the existing fault situation.

PRELIMINARIES

Given n modules Uy, U,, .-, Ua-). we will denote the modules
which U; tests by Uy, . r=1,2,---, t where f(r, i)e [0, 1, -,
n,—1}i=0,1,---,n — 1. For convenience, we will always assume
that U, tests itsell and, regardless of its state, concludes that it is
fault free. The outcome of the test of module U 4, ;, by module U;
will be denoted a(i, f(r, i)) where

if U, concludes that U, is fault free
otherwise.

a1,)= >

It should be noted that the conclusion of, say, U, regarding the
state (faulty or fault free) of the modules to which it is connected is
only reliable if indeed U, is fault free. If with each module U, we
associate atesttable B,,i = 0,1, ---,n — 1, where B, represents the
conclusion of U, regarding the states of all the modules, we have
the problem of determining the existing fault situation based on
the available test results. Whether or not this is feasible clearly
depends on the number of faults and the interconnection design.
We will assume in the following that at most ¢ modules can be
simultancously faulty and that every module is tested by at least ¢
other modules. Under some assumptions on the interconnection
design, Preparata, Metze, and Chien [7} have shown that it is
feasible to diagnose any valid fault situation. However. the diag-
nosis algorithms which have been proposed to do so are quite
complex [1}, [4}, [5) We propose here a new diagnosis algorithm
for this problem. For the purpose of explanation we will assume in
the following that the interconnection design between the mod-
ules is the so-called D, , design of [7]. wherein there is a testing
interconnection from U, to U;if and only if j — i = m (modulo n)
and m assumes the values from 1 10 1. The results presented here
have been extended to more general interconnection designs, but

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 11, NOVEMBER 197K

since they are descriptively cumbersome, these extensions will not
be detailed.

DiAGNOSIS ALGORITHM

Each test table B; has components B, o, B, ,, ---, B, .-, where
B, ; represents the conclusion of module U, regarding the state of
module U,. If module U, “belicves™ that module U, is fault-free,
then B, is set to the value 0; otherwise, B, ; is set to the value 1.
Suppose that By, By, ---, B, -, are complete in the sense that every
module has a conclusion regarding the state of each of the mod-
ules U;,i=0,1,---,n — 1. We will assume here that if a module is
fault-free, its corresponding table is correct.

Lemma 1: There exists at least n — t of the B, tables which are
identical.

Proof: Since at most t modules are faulty, and since a 1able
corresponding to a fault-free module correctly describes the fault
situation, the theorem follows.

Lemma 2: 1If there exists only one set of identical tables B;,,,
Bic2y, -, Bisy, such that s > n — ¢, then each of these tables in this
set correctly describes the existing fault situation.

Proof: We already know that there exists at least n — 1
correct, and therefore identical, tables. Therefore, if only one set of
identical tables has a cardinality larger than or equal to n — ¢, this
set must consist of the correct tables.

It should be clear that no conclusion can be made regarding the
fault situation if there exists more than one set of identical tables
with cardinality larger than or equal ton —¢.

Theorem 1: Suppose that n > 2t + 1; then there exists one and
only one set of identical tables with cardinality larger than or
equalton —t.

Proof: Suppose that n > 2t + 1 and assume that there exist
two sets of identical tables of cardinality n, and n,, respectively.

Assume

n>n-—1
and

ng>n-—t.
Then

ny+ny>2n-21

We know that

nzn;+n,
and therefore

n>2n-2t
This inequality, used in conjunction with n > 2t + 1, yields
2n > 2n + 1

and we conclude that we cannot have two sets of identical tables
of cardinality larger than or equal ton — t when n > 21 + 1.

At this point we need an efficient procedure to build the com-
plete n tables By, B,. ---. B, ., such that if module U, is fault-free,
then the table B, reflects accurately the fault situation of the mul-
tiple processor architecture. Such an algorithm is presented in the
following to compute the tables By, By, ---, B, _;.

Algorithm 1: Letiin[0,1,---,n — 1]andtin[1.2, ---,n — 1] be
given.

CORRESPONDENCE

¥
= ”\i’n!“_ /a(j,k)~l
) [f&:!_:_i] no
IR
N

Fg i

Step 0 Set B,,.=0 for m=0, 1,---,
k=i+1 andset Ny =0.

Step 1: 1f Ny > 1, stop: else, go to Step 2.

Step 2: 1{ k = i, stop: else, go to Step 3.

Step 3:Ifa(j. k)= 1.set B,, = l.set Ny = Ny + [.and go to
Step 4: else, set j = k and go to Step 4.

Step 4:Set k =k + 1 and go to Step 1.

Notes:

1)} Al additions are performed modulo n.

2) We assume a D, interconnection design, e, f(r.j)=j+r
(modulo n), and therefore, we use the notation a(j, j + r) instead
of the more general notation a(j, f(r, j))

Theorem 2: 1f a D, , interconnection design is used, if the max-
imum number of faults which may occur is ¢, and if module U, is
fault-free. then the table B, constructed by the algorithm ac-
curately reflects the existing fault situation.

Proof: We need to show that the algorithm is well defined
and that it produces tables B, which are correct whenever U, is not
faulty. The technique we use 1o prove the theorem is based on the
use of invariant assertions as described in [2] (see Fig. 1).

We assume that a D,, interconnection design is used, i.e.
modulie U, tests the modules U, .. U,, ;.. U,.,. The algorithm
uses the quantity a(j, k) which contains the result of the test of
module k by module j. It follows that the algorithm is well defined
if and only if j and k are related by

n— 1, set j=i, set

k=j+r

where r is some integer in [1.2,---, 1]
Assume that before executing Step 3. the following assertion
holids:

(Al)j+1<k<j+ 14N,

Then it can be shown that (A1) still holds after the execution of
Step 4. Clearly, (A1) is satisfied by the initial values given to, &,

'''' VALY (A3, (ALY, (AS)
true

- o= - LR, IA2), (A3), (AK), (AS)
true

(A1), {A3),(A4), (AS)
true

Flowchart of Algonthm | Interpreianon when module U, is not faulty

and N;. and therefore we conclude that (A1) is always satisfied
before the execution of Step 3.
It is only possible 1o reach Step 3 if

h’r <l

1t follows that just before the execution of Step 3, the quantities j
and k are related by the assertion

(A2) j+1<sk<j+1t

which shows that the algorithm is well defined.

The first part of the proof showed that the algorithm is well
defined. We now prove that if U, is fault-free, then the table B,
reflects the actual fault situation. Following again the approach
described in [2}, we show that the following assertions are always
satisfied before the execution of Step 3.

(A3) The module U; is not faulty.

(A4) B; accurately reflects the existing fault situation up to
k-tie foralmin[i,i+ Li+2 - k—1]:

Bim=0 if and only if module U,, is not faulty
and
Bn=1 if and only if module U, is faulty.
(AS) N contains the number of faulty modulesup to k — 1.ie.
k-1
Ne= z B

It can be shown that if (A3), (A4), and (AS5) are true before the
execution of Step 3. then they are still true after the execution of
Step 4. Clearly, (A3), (A4), and (AS) hold after the execution of
Step 0, and therefore we conclude that (A3), {A4), and (AS) are
always true before the execution of Step 3.

Now, suppose that the algorithm stops in Step 1. We know that
B, is correct up to k and that Ny = t. In other words, B, ,, correctly

IE:E TRANSACTIONS ON COMPUTERS, VOI (-27, 80 11, NOVEMBEE 1978

Fig 2. D, , interconnection of nine modules: modules U,. U, and U, faulty

reflects the fault situation for m =i, i + 1, ---, k and ¢ faults have
been detected. But we have assumed that at most ¢ faults may
occur, and therefore this implies that the remaining modules are
.not faulty. The B, form =k + 1,k + 2,---,i — 1 are equal t0 0,
and therefore the complete table B; is correct.

Suppose that the algorithm instead stops in Step 2; then B, is
correct up to k = i, and therefore B, is correct.

Although we have shown that when the algorithm stops, it
produces the correct table, it remains to be shown that it indeed
stops after a finite number of iterations. We note that k takes the
values i, i + 1, i + 2, ---, and therefore if the algorithm does not
stop in Step 1, it must necessarily stop in Step 2. This concludes
the proof of the theorern.

Note that table B; does not contain any DON'T CARE entries.
This occurs because table B, is constructed by using not only the
test results of module U, but also the test results of other mod-
ules. For example, if U; does not test directly U;, but U, tests U,
and finds U, correct, then U, accepts the conclusion of U, regard-
ing Ul"

ACCELERATED ALGORITHM

The diagnosis of the set of faulty modules based on the results
of Lemmas 1 and 2 and Theorem 1 requires that the table B,,
i=0,1,---, n— 1 be compared. This process is time consuming
and may be avoided. For each j=0,1,---, n — 1. fet y; be the
number of indices i for which B, ; = 1. i.e,

y; = cardinality of {i € {0, 1, ---, n — 1}|B, ; = 1},

then these quantities may be used in a diagnostic algonthm as
follows.
Algorithm 2: Let tin {1, n — 1] be given.
Step 0: Compute the tables B,, B,. -,
rithm 1.
Step 1: Compute the quantities 7. 7.

B, ., by using Algo-

. .l.u-l-

Step2:Lat V={jef0. 1, ,n—1]{y; 2+ 1]

Note that if the tables B; are arranged to form an n x n array
where B, is the ith row, then 7; is just the number of I's in column
J-

Theorem 3: 1f a D, , interconnection design is used, if the max-
imum number of faults which may occur is 1, and if n > 2t + 1,
then Uj is faulty if and only if jis in V.

Proof: The result is a direct consequence of Lemmas 1 and 2
and Theorems 1 and 2.

Algorithm 2 is well suited for implementation on a micro-
processor. For example, on an Intef 8080 microprocessor, the
total amount of memory necessary to store the data and the pro-
gram in the case n = 8 and t = 2 is 176 words of 8 bits, i.e.. 1408
bits.

We note that Algorithm 2 may be implemented in parallelon a
network of N microprocessors with N < n. In particular, if N
microprocessors are used, then it is possible to compute in parallel
all the tables B, and all the quantities ;. The computational time
necessary to diagnose the network of n modules using N micro-
processors for implementing Algorithm 2 is essentially T{n/N]/n
where T is the computational time necessary 1o execute the in-
structions of Algorithm 2 when a single microprocessor is used
and [n/N] is the smallest integer larger than n/N. The simplicity of
Algorithm 2 gives a large amount of flexibility to its implementa-
tion. For example, one could construct a special very reliable
arbitrator device which would receive all the afi. j)'s from the
modules and then would generate the diagnosis of the system
using Algorithm 2. The high reliability of the arbitrator could be
justified because of the simplicity of its required operation relative
to the complexity of the modules in the network. Alternatively, it
wotuld be possible to send the a(i, j)'s to each module. which could
in turn compute the tables B;. In this case. each module could then
decide for itself which other modules are faulty and act ac-
cordingly. Clearly, many other variations for implementation are
possible.

CORRESPONDENCE

Jiwt

AR . g ey - -
N ! I Ll .
b - 4 +
(SN S ——m e L]
: L ¢l
AP LT
: i L
3 O I
4 c| e
: sl oo ¢
¢ | 1 1
S R) o
O IS I O

J

Fig 3. Test outcomes a{), k}:

modules L), U,. and U, faulty

el el x| ¢
el o e e

¢ \ N 1
:ic R
o e o«

Fig 4. Quantity B, obtained by using the algonthm 10 process the test results
gavenn Fig 3

EXAMPLE

In order to demonstrate the simplicity of the algorithms, we
apply them to the network given in Fig. 2. The network contains
n =9 modules, t = 3, i.e, at most three modules may be faulty,
and a D, ; interconnection design is used, i.e.. module U, tests U,
U,. and U,. module U, tests U,. Us. and U,. etc. Assume that
the modules U,. U;, and U, are faulty. Fig. 3 contains a possible
set of test outcomes. The application of the algorithm to these test
outcomes yields the tables B,.i =0, 1.2, ---_ 8§ given in Fig. 4 We
find that the tables B,. B,. B,. Bs. B,. and By are identical. We
have six identical tables, and using Lemma 2. we conclude that
these tables reflect the correct fault situation of the network, ie..
we conclude that the modules U,. U;. and U are faulty. Alterna-
tively. we may compute the quantities y;, ie. 70=0, 7, =8,
v3=0.73=8:4=0.74=0.76=8.7,=1,and ;5 = 1,and then
compute the set V ={j|;; >4) ={1 3. 6] Using Theorem 3,
we conclude once again that U,, U,, and Uy are faulty.

CONCLUSION

An approach to the problem of fault diagnosis of symmetnc
multiple processor architectures has been proposed. It consists of
constructing tables B, assuming that the corresponding modules
U, are not faulty. followed by a voting procedure. The construc-
tion of the tables B, is decoupled in the sense that each table may
be constructed independently of the others. It is possible to
decrease the amount of computation necessary to obtain all the
tables B,. r=0.1.---. n — | by increasing the dependency be-

tween the construction of the various tables. It 1s not difficult to
find schemes in which the construction of the table U; depends on
the tables Uy, Uy, -+, U,_ . Such schemes are more complicated
to code than the one we propose. require more memory to store
the program. and do not lend themselves to parallel implementa-
tion. Therefore, we feel that our scheme. i.e., Algorithm 2 which
has a time complexity of 0(n?) if sequentially implemented and
O(n) if implemented on a network of n microprocessor, is ideally
suited for the fault diagnostic of D, , networks.

REFERENCES

{1] A M Corluhan and S. L Hakimi, “On an algorithm for idennfying faults i a
T-diagnosable system,” in Proc. 1976 Conf. on Inform Sci and Syst.. The Johns
Hopkins Univ.. 1976, pp. 370-37S.

[2] R W Floyd. “Assigning meantngs to programs.” in Proc. Symp in Appled
Math, Amer. Math. Soc. Providence. R1. 1967, pp 19 32

13) S L Hakimiand A T Amun. “Charactenzation of the connection assignment of
diagnosable systems,” JEEE Trans Comput . vol. C-23. pp 86 88. Jan 1974

[4] T Kameda. S Toida. and F. Allan. "A diagnosing algonthm for networks.”
Inform Contr., vol 29, pp. 141-148, 197$

[5] S N Maheshwari and S L Hakimi. “On models of diagnosable systems and
probahilistic fault diagnosis.™ 1EEE Trans Compui..vo) C-25, pp 22R-236. Mar
1976

[6) G G L Meyer. "A scgmented algonthm for solving a class of constrained
discrete optimal control problems.”™ JEEE Trans Automat Contr vol AC-19,
pp 134 136, Apr. 1974

[7) F P Preparata, G. Metze. and R T Chien. “On the connection assignment
problem of diagnosable systems,” IEEE Trans Electron Comput.. vol EC-16, pp
K4R RS4. Dec 1967

[2] J 1 Russelland C R Kime. “On the diagnosability of digital systems.” n Proc
1973 It Symp on Fault Tolerant omputing 1EFE Computer Soaiety Publica-
tons. June 1973, pp. 139 144

Recursive Coverage Projection of Test Sets
VINOD K. AGARWAL anDp GERALD M. MASSON

Abstract—In the generation of test sets for the detection of
stuck-type faults in combinational switching networks, it is an
expedient and reasonably common assumption to consider explicitly
faults only of specified sizes (for example, ali single faults), and then
to assume (or hope) that most or all faults of larger sizes will be
covered (that is, detected) as well This paper systematically
addresses this aspect of multiple fault coverage in a quantitative
manner for combinational networks, wherein only primary input
fanout is allowed. A procedure is given 1o estimate (or project) the
multiple fault coverage capability of a test set based on the known
coverage capability of that test set for subsets of the multiple faults.
This is accomplished by means of a recursive use of a detailed
formula which exploits two fundamental interrelationships between
test sets and faults. Based upon these results, it can be shown that the
above-mentioned assumption must be made, in general, with
discretion as its validity is highly network structureftest set
dependent.

Index Terms—Consistency, coverage, fault detection, internal
fanout-free networks, multiple faults, recursive projection

1. INTRODUCTION

The magnitude of the number of multiple faults which can
potentially occur in any logic network of reasonable size usually
prohibits their individual consideration in test set generation. L
Nevertheless, the ability to test a logic network for multiple faults
with a certain degree of confidence is fundamental to the reliabil-
ity aspects of a wide range of systems composed of such logic
networks [9]-[12]. Thus, in practice, it is often found that a test set
will be generated explicitly for only a subset of all possible faults
which can occur with the assumption (or hope) that most other
faults are covered as well. Except, however, for some reasonably
straightforward results, there has heretofore been little work pub-

Manuscript received March 15, 1979; revised May 9, 1979. This work was sup-
ported by the Office of Naval Research under Contract N00014-75-C-1196.

V. K. Agarwal is with the Depsrtment of Electrical Engineering. McGill Uaiver-
sity, Montreal, P.Q. Canada

G. M. Masson is with the Depaniment of Electrical Engineering. The Johns Hop-
kins University, Baltimore, MD 21218,

0018-9340/79/1100-0865%00.75 © 1979 1EEE

DR e it B La)

866

Jished in the literature which theoretically analyzes this assump-
tion in a quantitative manner. This note, therefore, addresses this
problem of analyzing the coverage capability of test sets for mul-
tiple faults of sizes larger than that for which the test sets were
explicitly generated.

. A particularly prominent aspect of this problem is the case in
which a complete single fault test set is generated for a network
and then used for the coverage of both single and muitiple faults
in the network. The following example illustrates the tenuous
nature of such an approach.

Example 1: Consider the 40-input, single-output, nonredun-
dant, combinational network, denoted as N. shown in Fig. 1(a).
Let K ={1,3,6,8, 11,13, 16, 18, 21, 23, 26, 28, 31, 33, 36, 38} bec a
set of v = 16 lines in N, and let T, be the single fault detection test
set (SFDTS) consisting of the 56 input vectors shown in Fig. 1(b).
Now it can be seen upon investigation of this network that 7; also
covers every multiple fault involving any 2 and 3 of these 16 lines
(indeed, this is expected [2]. [4]) and approximately 90 percent of
the multiple faults involving any 4, 5, and 6 of these 16 lines.
However, if we consider the multiple faults simultaneously involv-
ing all 16 lines, then it can be seen (on the basis of coverage
projection results to be later developed in this paper) that of the
2'% = 65536 such multiple faults, only 29822 of these faults are
covered by T,. That is. more than one-half of all the multiple faults
involving all 16 lines of K can be shown to be undetected by the
given T,. (It is interesting to note, incidentally, that no two or
more of these 2'® multiple faults are functionally equivalent.)
Thus, we see that for this network and these 16 lines, the multiple
fault coverage capability for the given T, is reasonable for muitiple
faults involving up to 6 lines, but that for the multiple faults of
greater size, this capability is quite tenuous.

The above example is not an isolated or rare situation as the
perspective given by the results to be developed in this paper will
indicate. Accordingly, we are well motivated here to develop a
formal, systematic approach for evaluating the multiple fault
coverage capability of test sets.

Finally, the fact that we deal in this paper exclusively with
networks wherein only primary input fanout is allowed should
not be viewed as overly restrictive. While it would be inappro-
priate here to detail the importance of their position in the general
area of combinational switching networks, it is clear that such
networks have provided and will continue to provide a useful
framework for the establishment of general results and guidelines
in the field of fault analysis. Moreover, since the use of our results
leads to somewhat of a warning regarding the projected multiple
fault coverage capability of test sets, these networks serve us well,
as it has been shown [6]. [7] that the presence of internal fanout
should, if anything, decrease this coverage capability. It should be
noted that the class of internal fanout-free networks considered in
this paper is significantly more general than the class of tree
networks wherein no fanout is allowed. In fact, straightforward
methods to determine complete multiple fault detection test sets
for tree networks are well known [8}-[12)

Il. PRELIMINARIES

An n-input, single-output internal fanout-free combinational
switching network in which primary input fanout is allowed will
be denoted in the following simply as N. For reference, each line
of N will be labeled with a distinct integer. Subsets of the set of
lines in N will then be denoted, for example, as I = {i,, -*-, ip},
J = {js. v jg)s of K = {ky, -, ko}. The n primary input variables
Xy, X3, "+ Xo to N will be collectively denoted in general by an
n-tuple input vector X. We will use X, to signify a particular input
vector to the network wherein each x; € X, 1 <j < n. is assigned
a specific binary vaiue of either 0 or 1.

IEEF TRANSACTIONS ON COMPUTERS. VOL. €-28, NO 11, NOVEMAER 1979

'
jp—
L2
Ery
) T =
g
o-—ﬁ
lrl ;
L
9l
B

3p—*
x
N
P
33134_;4
'35 ”
| Syp—
*37 3 st
X3g—
*3g——
Tp—*
(2)
+ ¥
1 Input Vector X, i Input Vector xI
p] 13, 5. 11, 13, 15)0 29 (12, 18, 19, 31, 32, 38, 39)l
2 a, s, a3, 08 30 | 14, 16, 17, 33, 34, 36, 3N,
3 (8, 10, 16, 18, 20)0 31 113, 14, 17, 33, 234, 36, S7l1
4 | te, 10, 16, 18, 203 3z | ar, 12, 19, 31, 32, 38, 39},
s [A, 3, 5, 13, 15), 33 {a, s, 9 2, 22, 28, 29,
6 | a. 3, 5 211, 15, 30 |13, 6, 7, 23, 24, 26, 2D,
7 116, 8, 10, 18, 20, 35 | (3, 4, 6, 23, 24, 26, 21,
[] (6, B, 10, 16, 20)0 3e , 2. 8, 21, 22, 28, 2’)1
9 1, 2, 3, 4, 11, 13, 15)0 3 a1, 18, 19, 331, 32, 38, 39]1
10 (6, 7. B, 9, 16, 18, 20)0 38 €13, 16, 17, 33, 34, 36, J7)l
I (1, 3.5, 11, 12, 13, 14, 39 | (13, 14, 16, 33, 34, 36, 37),
12 6, 8, 10, 16, 17, 18, l‘))o 40 111, 12, 18, 31, 32, 38, 39)l
13) (23, 25, 31, 33, 38, a1 |, 2, 8,09, 22, 28, 29,
14|21, 25, 31, 33, 3%y, 2 |G, 4 607, 260 26, 21
15 28, 30, e, 138, QD)o 43 {3, 4, 6, 7, 23, 24, 27)l
16 | (26, 30, 36, 38, €0, “ 0,2 8 9, 21, 22, 29,
1?7 (21, 23, 25, 33, 35)0 45 {11. 12, 18, 19, 32, 38, :!9!l
18 t21, 23, 25, 31, 35)0 46 {13, 14, 16, 17, 34, 36, 37)l
19 | (26, 28, 30, 38, 40), a7 | {13, 14, 16, 17, 33, 34, 37),
20 (26, 2R, 10, 36, 00)0 4 a1, 12, 18, 19, 31, 32, 39)l

~
-
~
-
~
~

23, 24, 31, ¥, 35)0 «9 , 2, 8, 9, 21, 38, 29/,
. 28, 29, 36, 38, 40)0 50 t3, 4, 8, 7, 23, 26, 27},

~
~
~
'3
~
~

23 €21, 23, 25, 31, 32, 33,), 51 (3, 4,6, 7, 23, 24, 261,
24 {26, 28, 30, 36, 37, 138, 391, 52 f, 2, 8, 9, 21, 22, 28),
25 (2, 8, 9, 21, 22, 28, 29, 53 t11, 12, 18, 19, 31, 38, 291,
26 {4, 6, 7, 23, 24, 26, 270, 54 213, 14, 16, 17, 33, 36, 37,
r) (3, 4, 7, 23, 24, 26, 27)l 55 (13, 14, 26, 27, 33, 34, J(!)l
28 1, 2. 9, 21, 22, 28, 29)1 56 f11, 12, 18, 19, 1, 32, ELEN

)

*X = {e,. €57 e}y, B € {0, 1} implies that the 40-tuple input vector X, 1s such
that the components at the positions e, ¢,." -, ¢, are all 8, and the components at all
the other remaining positions are f. For example, X, = (0,1.0.0,0,0.0.1.1.0.0.0.
0.0.0,0.0,0.0,0,1,1.0,06,0.0.0,1,1,0.0.0,0,0,0,0,0,0.0,0).

Fig. 1. (a) Network for Example 1. (b) Test Set for Example 1.

The Boolean function in terms of the primary input variables
realized by any line, say, t in N, will be denoted by ¥,. We will refer
to ¥, as the internal line variable for line 1. Similarly, we can
succinctly describe the set of Boolean functions corresponding to
the set of internal line variables of, say. the set of lines K = {k,. k,.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-28, NO 11, NOVEMBER 1979

-k} as Yy ={Y,,, Yi,. ", Yi.}. The primary output function of
N can, of course, be expressed entirely in terms of the primary
input variables. However, for our purposes, it will be necessary to
also express the primary output function in terms of internal line
variables. Accordingly, we let Z[X ; Yx] denote the primary output
function of N when it is written in terms of X and Y. For exam-
ple.if K = {1,2, 3, 4}, the Boolean function Z[X ; Y] for a network
N might be written as Z[X; Y] = (x,%, Y, + x3)- (x¢ 1) +
x1x3 ¥y + Yo + x3x4.

Given any set K of v lines in N, clearly, there are 2° possible
stuck-type fault events that can be associated with these v lines
wherein each of the lines is either stuck-at-zero or stuck-at-one.
This set of 2° such fault events on the set K of lines in N will be
referred to as the fault complex on K and will be denoted as
Fx = {a}, a}, -, a}*} where each o € Fy is described by a binary
v-tuple. In the presence of any fault event ak € Fy in N, the result-
ing faulty primary output function of N can be written as Z[X;
ak]. Clearly, this is obtained from Z[X; Yx] by simply replacing
the variables of Yy in the function by their corresponding binary
values from a%. In the following, whenever there are no chances of
ambiguity, ax will be used in place of ak to denote a general
element of Fy. -

It should be noted here that because we are considering only
internal fanout-free networks where primary input fanout is
allowed, it follows that there are dominating interrelationships
among the faults on the lines of N which indicate that not all
subsets of lines of N are really of interest. Accordingly, we will
make the following two assumptions on the members of sets of
lines to be considered in this paper: first, we will assume that any
set of lines we consider, such as the set K discussed above, will not
contain primary input fanout stem lines; second, we will assume
that any set of lines we consider will contain no two or more lines
which are on the same path from a primary input to the primary
output. It should be clear that these assumptions in no way re-
strict the consideration of fault events of interest. It should also be
noted that because of these assumptions, it follows that the pri-
mary output function Z[X ; Y] for any set K of lines of interest in
N can be expressed such that each internal line variable for each
t € K occurs exactly once in the function, either as ¥, or as ¥,
Finally, it should be clear that because of this latter property of
Z[X ; Y] regarding the single occurrence of each ¥, € Yy, for any
set K of lines in N, we have that Z[X; Yx] can be written as a
function of Boolean subfunctions such that none of the Y, var-
iables appears in more than one of the subfunctions.

More particularly. let K be a set of v > 2 lines in N, and let I
and J be disjoint, nonempty subsets of K such that] v J = K.
Consider then the following.

Definition 2.1: The sets I and J are said to form a 2-partition of
K if there exist two Boolean subfunctions, say, H[X: ¥;] and
M[X; Y,), such that the primary output function of N can be
written as Z[X; Yx] = H[X; Y] » M[X: Y,] + O[X] where “s"
corresponds to either “+" or “- ™. _ _

Example: If Z[X; Yx]= (x;%; ¥y + x3) (x4 V2) + x,x3 V3 +
Y. + X3 xs, then I = {1, 2} and J = {3, 4} form a 2-partition of
K={1, 2, 3, 4}, wherein H[X; Y] = (x; %2 V1 + x3) " (x4 V2),
M[x: Y)] = XyXy 7’ + Y‘. and O[X] = X3Xs.

Because of the above-mentioned assumptions on the members
of sets of lines considered in this paper, it should be clear that
given any set K of v > 2 lines in N, there will always exist at least
one 2-partition of K. This concept of a 2-partition will play an
important role in our coverage projection theory. Thus, it will be
convenicent in the following 1o refer to each of the sets / and J as
component sets of K. and to refer to each of the fault complexes F;
and F, as component fault complexes of Fx. Note that if the
component sets J,say, I = {iy.is.- -, i,},and J,say.J = {jr.ja. ",

867

Jq. are considered as ordered vectors, such as (iy, -+-. i,) and (j,.
-++, jq). respectively, and if the set K is accordingly ordered as (i;.
iz, """, ip j1s 2. **", Jo) then the fault complex Fx will be isomor-
phic to the Cartesian product F; x F,. Throughout this paper, the
above-mentioned ordering in sets I, J, and K will be assumed for
the sake of notational convenience. Also, we will write that
Fx = F; x F, where it will be understood that elements of Fy are
v-tuples.

Obviously, we could also define r-partitions for r > 2. Indeed,
this has been done in [5). But the accompanying notational com-
plexity outweighs the advantage of the more general statements of
the results to follow. Moreover, these developments using only
2-partitions are a sufficient basis for such generalizations [5].

II1. AcTuaL AND PROJECTED COVERAGES

In this paper we will use T(ax) to denote the standard complete
test set for the fault event ax € F. This test set consists, of course,
of all those input vectors to N which can detect ay, and can be
detailed, for example, as T(ax) = {X| Z[X; Ya] @ Z[X;; ax] = 1}.
Given a set of input vectors, denoted as T, for N, we will be
interested in the capability of T to cover (that is, detect) fault
events in Fx. Accordingly, we will let ACx(T) € Fx denote the set
of fault events in Fx which are actually covered by T. In other
words, oy € ACx(T) implies that T n T(ax) # &. We will in the
following refer to the actual coverage of T for Fx as being com-
plete when ACx(T) = Fy. It should be kept in mind, however, that
AC(T) is usually unknown, and it is the goal of this note to
consider means of determining or approximating ACx(T).

Accordingly, in addition to actual coverage, we will be very
much concerned in the following with what we will refer to as the
projected coverage of a fault complex by a test set. This projected
coverage will be an estimate of the actual coverage. Hence, rela-
tive to the above, we will let PCx(T) < Fy denote the set of fault
events in Fx which are estimated to be covered by T where
PCx(T) will always be less than or equal to ACx(T). The process
of calculating PCx(T) will be referred to as test set coverage
projection and can generically be described as follows. In the
network N, and for the set K of v lines in N, let and J form a
2-partition of K. Let T now be a set of input vectors whose (either
actual or projected) coverages for the component fault complexes
F,and F, of Fx are known. Test set coverage projection can then
be described as the process of projecting the coverage of T to Fx
based upon our knowledge of the coverage of T for F; and F,.
Accordingly, we will refer to the component fault complexes F;
and F, as the basis of projection and to Fy as the target fault
complex. In Section V, we will give a projection formula which
can be used to project the coverage of a test set to a target fault
complex.

It should be noted here that the resulting projected coverage by
T of the target fault complex Fx would ideally be equal to the
unknown actual coverage (that is, PCx(T) = ACx(T)). If, indeed,
this is so, then in the following we will say that the projected
coverage of T for Fy is exact. However, whether or not the
projected coverage is exact clearly depends on a number of fac-
tors. Certainly one of the leading factors is whether our knowl-
edge of the coverage of T for the basis of projection is, indeed,
the actual coverage. But even if this is so, other factors such as
the mechanics of the test set coverage projection and the relation-
ships which exist among T and the fault events of F, and F,

obviously also enter into this issue. This latter factor is the topic of

the next section.
1V. CONSISTENCY AND TESTING DIRECTION

In this section we will define two relationships between faults
and test sets which will be seen 1o be central to test set coverage
projection from a basis to a target.

LR

868

Definition 4.1: A fault event a, € F, is said to be a f-consistent
fault event for an input vector X, relative to the subfunction H{X ;
Y;}if H[X,: Y,) = B implies H[X; a,] = § where f ¢ {0, 1).

Accordingly, given any H[X ; ¥;) and an input vector X, to N,
we can determine the set of fault events

Fi(X.) = {o;| H[X:: Vi) = H[X;; a,] = B}.

In other words, F§{X,) € F, is the set of all the f-consistent fault
events of F, for X, relative to H{X; Y). Along similar lines, we
now give the following.

Definition 4.2 Given a set of input vectors T to N and the fault
complex F, a fault event a; € F is said to be a {0 — 1)-tested fault
event for T if for some input vector X, € T, we have that Z[X;
Y]=0and Z[X;; a;) = 1.

In other words, if a; is a (0 — 1)}-tested fault event for T, then
there must exist at least one input vector X; € T which makes the
fault-free output of N a logical zero and the faulty output of N
when the fault event a, is present a logical one. [n the following,
such input vectors will be said to (0 — 1)-test a;. The above can
similarly be stated for (1 — O)-testing.

Using Definition 42, we now supplement the notation in-
troduced in Section I1I by letting AC?'(T) and AC}°(T), respec-
tively, denote the set of fault events of F, which are actually
(0 - 1)tested and (1 — O)-tested fault events for T. Clearly,
ACPT) U AC}Y(T) = AC(T). Similarly, we let PCPY(T} and
PC}O(T). respectively, denote the set of fault events of F, which
are projected to be (0 — 1)-tested and (1 — 0)-tested fault events
for T. Clearly, PC{Y(T) U PC}%T) = PC(T).

Finally, given a fault event, say. a; € AC,(T), or a; € PC,(T), we
will use (T(a;) ~ T)*° to refer to the set of all those input vectors
in T, each of which (1 —O)tests «,. (T(x,) ~ T)°! can be in-
terpreted analogously.

YR p—

s V. PROIECTION FORMULA

In the last section, we defined two relationships, namely, con-
sistency and testing direction, between fault events of component
fauit complexes and test sets. Based on these two relationships, we
will now present a formula for obtaining the projected coverage of
a test set for any set of lines in N. We will then prove a fundamen-
tal theorem which relates this projected coverage to the actual
coverage.

Projection Formula: Given

1) a set K of lines in N and a 2-partition [and J of K; and

2) a test set T which is known to cover the set PC,(T) of fault
events of F; and the set PC,(T) of fault events of F,;

then the projected set PCx(T) of the fault events of Fx covered
by T is given as follows.

Part 1: 11 Z[X; Ya] = (H[X; Y} + M[X: Y,]) + O[X], then

PCx(T) = PCR(T) v PCI(T)
where
PCE(T) = (PCP(T) x F,) (Fy x PCI(T))
- and
PCY(T) = S}°(T) L S}(T)

where

ST = ({eu} x FI(X -))

aye PC(T) (X (T nT(ane
“and

sio(T) = (FF(X) x ().

0, € PC,AKTY (’x.c(r ~ Ta,me

JEFF TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 11, NOVEMBER 1979

Part 2: If Z[X; Yx) = (H[X; Yi) - M[X; Y,}) + O{X]. then the
projection formula is the dual of Part 1.!

Although notationally complex in structure, the Projection
Formula will be secen to be quite useful in the next section.
Moreover, a rational for the structure of the Projection Formula
(and its associated complexity) can be provided for the reader by
taking the general perspective of path sensitization [7]. Note that
the equation for PC§(T) suggests that: a) for every a, € PCP (T},
we will have that every ax = (ay, a,), where a, € F,, will also be
detected by T; and b) for every a, € PCS*(T), we will have that
every ax = (a;,«,), where a, € F, will also be tested by T. With this
in mind, if we refer now to the network of Fig. 2, which is one
possible realization of the given Z[X ; Y], it is seen that because of
the OR gate at the output, if a fault, say, a; 1n subnetwork N, was
(0 — 1)-tested by means of sensitizing line 1, then no fault in N,
could desensitize this line and mask fault a,. Similarly, faults in
subnetwork N, cannot mask (0 — 1)-tested faults of N;. The
above, then, gives a rational for the structure of the equation for
PC{*(T) in the Projection Formula.

Similarly, consider the equation for, say, S}%(T) relative to the
network of Fig. 2. Assume that a, is a fault in N, which is
(1 — O)-tested by some X, in T. In other words, for this X, line 1
has the logical value of 1 when «a, is not present and will be 0
otherwise, and line 2 will be O in both instances. Now, if a fault,
say, o, occurs in N such that the value on line 2 remains at 0 for
this X ;, then, clearly, X; will also (1 — O)-test the fault ay = (a,, a,).
From Definition 4.1, such an F, must belongto FJ(X,). Hence, all
the faults in {o,} x {F3(X)} will be detected by X;. Moreover, the
above would hold true for every X; e T which (1 - O)tests a,.
Hence, the following set of faults will be (1 — 0)-tested by T

(() = X))

X, €(T nT(a;ni0

Calculating such sets for all ¢, € PC}%(T) and unioning them pro-
vides the rational for the equation for $}%(T).

It is important to note that the Projection Formula has an
inherent, recursive nature in the sense that the projected coverage
PCx(T) obtained by its use can then be used for determining the
projected coverage of T to other fault complexes in N of which Fy
is a component fault complex. It should also be pointed out that
by virtue of this recursive nature, the Projection Formula can be
stated more generally for r-partitions, r > 2 [5).

The following theorem is a crucial justification of the Projection
Formula.

Theorem 5.1: For the Projection Formula,

PCx(T) € AC(T).

Proof: We will prove this theorem only for the case in which
PCx(T) is obtained by using Part 1 of the Projection Formuia,
that is, for the case where Z(X; Yx] = (H[X; ;] + M[X; ¥,]) +
0{X]. Note that since the equations in Part ! and Part 2 of the
Projection Formula are duals, a proof of the theorem correspond-
ing to Part 2 of the Projection Formula follows similarly. The
following preliminaries will facilitate the proof.

Let ay be a fault event of Fx. We know that ax € ACx(T)if and
only T(ax) n T # ¢. Hence, to show that for every ax € PCx(T)
T(ax) N T # ¢, we will study the composition and properties of
T(ax).

Now, there are many techniques by which T(xx) can be

' {Note that since 0 x] does not explicitly play any role in the Projection Formula.
the absence of exact duality in Z[X ; ;] in Parts | and 2 is not of importance in our
considerations.)

{EEE TRANSACTIONS ON COMPUTERS, VOL. C-28, NO. 11, NOVEMBER 1979

detailed, but an algebraic or functional approach which will be
most useful in our considerations is the Boolean difference
method wherein

T(ax) = {Xi| Z[X:; Y] ® Z[X,; ax] = 1}.

Since in Part 1 of the Projection Formula we have that Z[X;
Ya] = (H[X; Y;) + M[X; Y,)) + O[X] and a, = (a,, a,) for some
a; € Fy and a, € F,, we can also express T{ax) as follows:

T(ax) = {X,|((H[X:: /] + M[X,; Y,]) + O[X,])
SH[Xa) + MIX;) +0[X =1} (1)

To show that T{ax) N T # @, ax € PCx(T), we must determine
T(=,) and T(a,), since out information about T is limited only to
its coverage of the fault events F, and F,. As above, then, we can
obtain T(a,) and T{(a,) as follows:

T) = X Z[X: %) Z[X: w) = 1)
= (XJ(HIX,: Y]+ MIX,; Y]+ 0[X.)
O ((H[X.a)] + M[X:)] + 0[X]]) = 1} @)
and
T(a) = {X\|Z[X;; Y,] + Z{X;;a)] =1}
= {X;|(H[X:; Y] + M[X,; Y}]) + 0[X])
@ ((H[X: Y] + M[X;; a]) + O[X]) = 1}. (3)

With these details regarding the composition of T(xx), T(a,),
and T(a,) in mind. we can now proceed to the formalities of the
proof. To show that PCx(T) obtained by using Part 1 of the
Projection Formula is contained in or is equal to ACx(T). we will
only consider the PC}%(T) subset of PCx(T). The theorem can
similarly be proven for the PC§!(T) subset of PCx(T).

Let a; be a fault event of F, in PC}%(T). Furthermore, let X; be
an input vector in T which (1 —0)tests a,, that is,
Xi€ (T n T(,))*°. By Definition 4.2 for this X; we have that
Z{X:; Y} =1 and Z[X,; a,] = 0. But more particularly observe
that from (2) this implies that M[X;; Y,]=0[X;] =0, H[X,;
Y;) = 1,and H[X,, a;] = 0. Noting that we have M[X; ¥;] = 0, we
now consider F3(X ;). the fault events of F, which are O-consistent
relative to M{X ; ¥,] for X. Letting a, € F3{X,). we now direct our
concern to the fault event ax = (a;, a;) of Fy. Since, by the
Definition 4.1, we have that M[X;: Y;] = M[X,; a,] = 0, it should
be clear that together with the above observations regarding (2),
we have from (1) that X;e T(ax), that is, T(ax) N T & ¢.
Furthermore, since Z[X; ¥;] = 1 and Z[X; ax} = 0, we have also

.that ax € ACLY(T).

The above is evidently true for all fault events of Fy in {a;} x
F§(X.) corresponding to every X;€ (T n T(a;))'°. In other
words,

(fas} x F3(X)) = ACKY(T). 4)
X, (T n Tiapto .
Moreover, (4) is clearly true for every a; € PC}%(T). Thus, we
have that

((fo} x Fe(x,») € ACK(T), (5)
2,6 PCAYTY\X, € (T ~ T(apno

For convenience, we refer to the left-side set of (5) as S!°(T).
We can similarly show that

((FX) x)] S AT (@)
a,e PCOYT) \X, e (T ~T(a,me

869

As before, for convenience, we refer to the left-side set of (6) as
S3(T).
Combining (5) and (6} yields

PCIo(T) = SI%(T) u S}°(T) < AC(T). QED.

In other words, we have shown in Theorem 5.1 that the
projected coverage PCx(T) obtained by using the Projection For-
mula is a lower bound on the actual coverage ACx(T). This means
that the Projection Formula gives at worst an inexact coverage.

Consider now the particular case, wherein T is a complete
single fault detection test set. In such a case, PCx(T) can be ob-
tained by a recursive use of the Projection Formula. That is, if
either PC,(T) or PC,(T) or both are not available, then the
Projection Formula could first be used to calculate those unavail-
able projection sets. In fact, since we are dealing with a complete
single fault detection test set, such a recursive use of the formula
would continue until the component complexes being considered
are associated with single lines of N. It might now seem that for
large K, such recursive use of the Projection Formula could lead
to a poor PCg(T) as an estimate to ACx(T), but such is not always
the case, as is shown in the next section.

V1. ActuaL AND PROJECTED COVERAGES REVISITED

In this section we will consider some cases to illustrate situa-
tions in which the projected coverage can be shown to be com-
plete or exact relative to the actual coverage of the target fault
complex.

We begin by giving the following theorem regarding com-
pleteness in the sense that situations can be specified wherein the
projected coverage given by the Projection Formula will be the
entire target fault complex, that is, PCx(T) = Fx. Doing so will
not only give further insight into the Projection Formula, but will
also reinforce/extend the principal results available in the litera-
ture [1]-[4] regarding complete multiple fault coverage situations
for single fault detection test sets.

Theorem 6.1:

a) Given any set K of lines and a complete single fault detec-
tion test set 7T, for a cascaded two-level network, the projected
coverage PCx(T,) obtained from the Projection Formula equals
Fx. (See [1])

b) Given any set K of lines and a complete single fault detec-
tion test set T, for an internal fanout-free network N, if the lines of
K are inputs to three or fewer gates, the projected coverage
PC x(T,) obtained from the Projection Formula equals Fy. (See [2]
and {3])

c) Given any set K of lines and a complete single fault detection
test set T, for an internal fanout-free network N, if Z[X;
Y)=H[X; Y]+ M[X; Y,)+0[X]) |I|=|K|-1, |J]=1,
and if T, covers all the fault events of F,, then the projected
coverage PCx(T,) obtained from the Projection Formula equals
Fx. (See [4].)

Proof: Given in [5], and available from the authors.

We will now consider some of those situations wherein the
Projection Formula is to be used, but the conditions of Theorem
6.1 are not satisfied. Our concern now will be exact projected
coverage. We start with the following.

Definition 6.1: Given a set K of lines, a 2-partition] and J of K,
and a set T of input vectors for N. If every X, € T is such that it
covers at least one fault event of F; v F,, or ifevery X, € T which
does not cover any fault event of F; U F, is such that it does not
cover any fault event of Fx as well, then T is said to satisfy the
exactness requirecment for F; and F, relative to Fy.

We wiil now prove a theorem which establishes a relation be-

870

tween PCx(T) and ACk(T) when T satisfies the exactness
requirement.

Theorem 6.2: For the framework of the Projection Formula, if
PC{T)= AC/T), PC,T)= ACLT) and T satisfies the
exactness requirement for F, and F, relative to Fy, then PCy(T)
obtained from the Projection Formula equals ACx(T).

Proof: We will prove this theorem (by contradiction) only for
the case in which PCx(T) is obtained by using Part 1 of the
Projection Formula as the other case follows similarly. We will
also take advantage of the preliminaries established in the proof of
Theorem 5.1.

Thus, assume that in Fy there exists a fault event

ax = (a). a,) € ACx(T) = ACR(T) v ACLY(T)
where

ax € ACY(T). but ay ¢ PCI(T) ™

or where
ax e AC}Y(T), (8)

We will now consider the implications of (8) and show that it
leads to a contradiction. It can similarly be shown that (7) would
also lead to a contradiction.

Suppose now that (8) is true. Then since ay € ACX®(T), consider
any X; e (T n T(xx))'°. For this X; we have that Z[X;; Y] =1
and Z[X,; ax] = 0. But more particularly observe from (1) that
this implies that

but ax ¢ PCY(T).

HIX: N+ MXi; v)=1
and
H[X:; a;) = M[X,;; a,] = 0[X,] = 0.

Along these lines, suppose that H[X,; Y;}]=1 and M[X;
Y,)=0. Then, clearly, Z[X; Y] =1 and Z[X, a])=0, so
a; € AC}°(T). Furthermore, since we have by hypothesis that
PC,(T) = AC/(T), then a; € PC}°(T). However, since M[X;;
Y, = M[X;; «;]=0, then «; € F}(X,). But this implies that
ax € ({as} x FI(X)) € PCY(T), which contradicts (8). Similarly,
if we assume that H[X;; Y;] = 0and M[X;; Y,] = 1, we are also Jed
to a contradiction of (8). Finally, the only remaining alternative is
H[X;; Y;) = M[X,: Y;] = 1. But from (2) and (3) this implies that
Xi¢ T(a;) and X; ¢ T(x,) for any a, € F, or a, € F,, respectively.
This, of course, contradicts the exactness requirement on T which

" states that every X, € T covers at least one faulteventin F; U F,, ~

or if X; does not cover any fault event of F; u F,, then X, does
not cover any fault of Fx. We therefore have that

ACLY(T) = PC}(T). Q.E.D.

It is clear from the proof of Theorem 6.2 that if PC,(T)=
AC(T) and PC,T)= AC,(T), then the projected coverage
PCy(T) diflers from the actual coverage ACx(T) only by those
fault events of Fx which are covered by the input vectors in 7, but
which do not cover any fault event of F, or F,.

The result stated in Theorem 6.2 is useful for determining the
actual coverage of a complete single fault detection test set for
multiple faults by means of the Projection Formula. More particu-
larly, given a set K of lines and a complete single fault detection
test set 7, for N, suppose that we use the Projection Formula to
determine the projected coverage PCx(T,). Suppose further that
for every execution of the Projection Formula algorithm, we have

IEEE TRANSACTIONS ON CUMPUTERS, VOL. C-2K, NO. 1. NOVEMBER 1979

that the actual coverage of 7, for the projection basis is known,
and the exactness rcqunrcmcm on T, for the projection basis rela-
tive 1o the targel complex is satisfied. Then, clearly, by Theorem
6.2 it can be concluded that PC(T;) so obtained would be the
actual coverage ACx(T,).

Example 2: Consider the network of Fig. 1(a) and the set K of
16 lines mentioned in Example 1. By using the Projection For-
mula with T as the set of input vectors given in Fig. 1{b), it can be
shown that | PC(T;)| = 29822. Furthermore, it can be seen that
the conditions of Theorem 6.2 are, indeed, satisfied for every
execution of the Projection Formula, and therefore we have that
PC((T) = ACK(T)

When we consider those situations in which neither the condi-
tions of Theorem 6.1 nor the exaciness requirement is satisfied, we
simply know that PCx(T)is a lower bound to ACx(T). First of all,
it might be that this lower bound is quite close to complete cover-
age and, therefore, is acceptable in some applications. But more
importantly, when we have the situation where the exactness re-
quirement is not satisfied and when the projected coverage is too
Tow to be acceptable with its uncertainty, then there is no recourse
but to utilize some classical means of determining the actual
coverage of T for Fy.

VII. CoNcLUSION

In conclusion, our experience in using the Projection Formula
on various internal fanout-free networks for various fault com-
plexes [5], [6] has shown that the common assumption that the
coverage capability of test sets is usually satisfactory for multiple
faults on sizes greater than that for which test sets were explicitly
generated must be used with discretion, as it has been so seen that
even for such networks, the validity of this assumption is highly
network structure/test set dependent. However, it seems to be
possible to characterize the most difficult fault complexes for
single fault detection test sets to cover by generic models [6). This
suggests that if such generic models could be avoided in the design
structure of networks, the overall coverage capability would be
enhanced. Indeed, in an extreme sense, this is the approach used in
the results/networks reported in literature for which any complete
single fault detection test sets cover all multiple faults [1].

REFERENCES

[1) D. R. Schertz and G. Metze, “On the design of multiple fault diagnosable
networks,” [EEE Trans. Comput., vol. C-20, pp. 1361-1364, Nov. 1971,

[2] R. J. Diephius, “Fault analysis for combinational logic networks,” Ph.D. disser-
tation, Dep. Elec. Eng. M h Inst. Technol., Cambridge, Sept. 1969.

3] J. W. Gault, J. P. Robinson, and S. M. Reddy, “Multiple fauht detection in
combinational networks.” JEEE Trans. Comput., vol. C-21, pp. 31-36, Jan. 1972.

[4] V. K. Agarwal and G. M. Masson, “A functional form approach to test set
coverage in tree networks,” IEEE Trans. Comput., vol. C-28, pp. 50-52. Jan.
1979.

5] —. “Recursive coverage projection of test sets,” Johns Hopkins Univ., Balti-
more, MD, Elec. Eng. Rep. 77-11.

[6] ——. “Generic fault characterizations for table-look-up coverage bounding.”
1EEE Trans. Comput., to be published.

[7] D. B. Armstiong. “On finding a ncarly minimal set of fault detection tests for
combinational logic sets,” /EEE Trans. Comput., vol. C-18, pp. 66—73. Feb. 1966.

[8] 1. P. Hayes, “A NAND model for fault diagnosis in bi nal logic
networks, JEEE Trans. Comput., vol. C-20, pp. 1496—1506 Dec l97|

{9) G. Markowsky, “A straightforward ique for prod imal multiple
fault test sets for fanout-free circuits,” IBM Res. Rep. RC 6222, Yorktown
Heights, NY, Sept. 29, 1976.

[10] G. Markowsky and C. W. Cha, “No single fault test set is smaller than any
minimal multiple fault test set for a fanout-free combinationai circuit,” 1BM
Rep. RC 6483, Yorktown Heights, NY, Apr. 13, 1977,

{11] C. D. Latino and J. G. Bred “Simplified multiple stuck-at-fault test genera-
tion techniques.” in Proc. 13th Anmu. Allerton Conf., 1975, pp. 682-691.

[12] §.C. Seth and K. L. Kodand i, “Di is of faults in lincas tree networks,”
{EEE Trans. Comput, vol. C-26, pp. 29- -33, Jan. 1977,

Multiple Fault Detectionin
Programmable Logic Arrays

VINOD K. AGARWAL

Abstract—The increasing recognition of PLA's as efficient and viable
modules for such purposes as microprogramming and design of sequential
controllers has led to a growing intefest in the development of optimum fault
detection test sets for these modules. It is now well known that a fault type which
is unique to PLA's is the class of contact faults. A single contact fault is the
spurious presence or shsence of a contact between 2 row and a column of a PLA.
We consider in this paper the problem of determining the capability of complete
single contact fault test sets to cover multiple contact faults of PLA's. Our
approach consists of developing a model of PLA’s which allows one to represent
a contact fault ina PLA as 2 stuck-at fault in the model of the PLA. Using this
model, it is shown that more than 98 percent of all multiple contact faults of
size 8 and less are inherently covered by every complete single contact fault test
set in 3 PLA. Applications of this model to stuck-at fault diagnosis are also
discussed.

Index Terms—Contact faults, masking, multiple fault detection, PLA fault
detection, PLA modeling, programmable Jogic arrays, single fault coverage.

1. INTRODUCTION

A programmable logic array (PLA) is normally used 10 implement
multioutput combinational logic by programming “blank™ arrays of
an AND-OR (or NOR-NOR) matrix [1]. The economy and flexibility
accrued by using PLA’s have moreover led to their growing usage in
such areas as microprogramming, sequential controllers, function
gencrators, and code conversion. The availability of ficld program-
mable logic arrays has furthermore provided the logic designer ad-
ditional frcedom to program an array on the site by blowing fusible
tinks within the array. The reliability of these devices is therclore a
matter of considerable imporiance {2}-{5).

Accordingly, this paper is concerned with the problem of fault
detection (that is, fault testing) in PLA's. Since, conceptually, a PLA
is simply a collection of many two-level AND-OR networks, it may
be argued that a PLA can be tested by using the well-known 1ech-
niques [6) for testing AND-OR nctworks. However the memory-like
structure of a PLA not only lcads to the usual stuck-at, bridge-type.

Manuscript reccived June 22, 1979; revised November 11,1979, This work
was supported in part by ONR Contract NO0014-75-C-1196 and by the
McGill University Faculty of Graduate Studies and Rescarch Grant 943-
81-19.

The author is with the Department of Electrical Enginccring. McGill
University, Montreal, P.Q.. Canada.

0018-9340/80/0600-0518500.75 © 1980 IEEE

TEEE TRANSACTIONS ON COMPUTERS VOL. (29, NO 6, JUNF 1950

and shorted-diode faults found in most combinational networks. but
it also results in a unique type of contact faults not found in such
networks. A contact fault (called a crosspoint fault in |2} and |3) and
shrinkage and appearance faults in [4]) in a PLA is caused by the
spurious presence or absence of a contact (that is, a fusible link) be-
tween a row and a column of the PLA. In a recent paper [2] by Os-
tapko and Hong, a scheme to generate a test set which detects the
presence of every single contact fault in a PLA is presented. More
importantly, it is also shown in their paper that any such test set for
a PLA inherently covers (that is, detects) most of its single stuck-at,
bridge-type, and shorted-diode faults as well. Similar results are
likewise obtained in (3], [4].

Nonetheless, since the single fault model does not account for all
the probable failures [7) of an LS chip, it is clear that for high reli-
ability applications, PLA's must be tested under a more general
multiple fault model. But it is equally obvious that the consideration
of various multiple faults which could possibly occur in a PLA would
be extremely impractical. For example, in a PLA containing 16 input
variables, 48 product terms, and 8 output lines, there are only 48 (2
X 16 + 8) = 1920 single contact faults, but extremely large 21920
multiple contact faults! Thus, as in the case of combinational net-
works, a practical compromise in such a situation would be to assume
that a complete single contact fault test set for a PLA covers most of
its multiple contact faults as well. The aim of our paper is to establish
the validity of this assumption.

II. CONTACT FAULTS AS STUCK-AT FAULTS

The logic implemented by a PLA can be very conveniently de-
scribed by a two-dimensional array of 0's and 1's, which is often re-
ferred to as the personality of the PLA {2]. The personality of a PLA
which we will consider in the following is simply a representation of
whether the contact between a row and a column of the PLA isa 0-
contact or a 1-contact, where 0-contacts and I-contacts are defined
by the following.

Definition 1: Given a row and an output column in a fault-free
PLA. a I-contact (O-contact) will be said to exist between the row and
the column if the link between the two is intact (correspondingly, is
not intact, that is, electrically fused).

Definition 2: Given a row and an input column in a fault-free PLA,
a 0-contact (1-contact) will be said to exist between the row and the
column if the link between the two is intact (correspondingly, is not
intact).

A two-input PLA with two rows and two output functions is shown
in Fig. 1(a). Using the above definitions, the personality shown in Fig.
1(b) is obtained. Finally, Fig. 1(c) illustrates the equivalent logic path
of this PLA.

We now formally define a single contact fault.

Definition 3: A single 0-contact (I-contact) fault is said 1o exist
in a PLA if due to some failure, a O-contact (1-contact) of the fault-
free PLA becomes a 1-contact (0-contact) in the faulty PLA.

Accordingly, the total number of single contact faults which could
possibly occur in a PLA would simply be the number of entries in its
personality. For a single-input decoder PLA with n inputs, m rows,
and p output functions, this number is easily seen to be m(2n + p).
Moreover, by generalizing Definition 3 to multiple contact faults, the
total number of multiple contact faults of a given size, say r > 1, is
seen 10 be ("27*7)) and the total number of all single and multiple
contact faults is

m(szp) (m(2”,+ P)) = 2m2n+p) o |

=]

Assume that T, denotes a complete single contact fault detection
test set for a PLA; that is, T, is such that for each single contact fault
in the PLA, there exists at least one input vector in T for which the
fault-frec output of the PLA, on at least one output line, is different
from the output in the presence of the fault. Similarly, let 7,,, denote
a complete single and multiple contact fault detection test set for a
PLA. As pointed out in the previous section, the generation of an
optimal T, is a rather impractical task. Therefore, our concern in
this paper is to determine the capability of a T, for a PLA 10 cover

(2)

(b)

(c)

Fig. 1.

An AND-OR PLA example.

its multiple contact faults as well. We do this by developing a com-
binational network model of the PLA such that each single contact
fault in it is functionally equivalent to some single stuck-type fault
in the modeled network. This model will be referred to as the SAE
network (stuck-at equivalent network) of the PLA.

The SAE network for a PLA is best obtained by considering con-
tact faults on input and output columns in separate manners. Ac-
cordingly, consider first the simple AND network shown in Fig. 2(a),
and assume that input lines x and y correspond 10 some input columns
of a PLA and the gate output line W corresponds to some row of the
PLA. Since each contact on lines x and y can be in two different po-
sitions, there are four different “programming™ configurations as-
sociated with this AND gate, as shown in Fig. 2(a). To be able to
represent a contact fault as a stuck-at fault, we will assume that each
contact of a PLA is represented by an input Boolean variable in its
SAE network, and that its value, 0 or 1 (as determined by Definition
2), in the PLA is the value of the line which carries that Boolean
variable in the SAE network. More particularly, suppose a, is a
Boolean variable whose value is O(1) if line x has a O-contact (I
contact). Let b, be similarly defined with respect to line y. With the
introduction of these two new variables, W then becomes a function
of x, y, ax, and b,, as shown in the K-map of Fig. 2(b). It is important
to note here that a, and b, do not depend on the values of x and y,
but only on the contacts on those lines. Therefore, x, y, a,. and b, are
four independent variables. Using now the straightforward Karnaugh
map technique. we get

W= (a, + x)(b, + y). (§))

A network realizing (1) is shown in Fig. 2(c).

Comparing the network of Fig. 2(c) with those of Fig. 2(a). we note
that depending on the values of a, and by, the former nctwork can
be made cquivalent to any one of the four “programming™ configu-
rations of the later networks. For example, for the top-left configu-
ration of Fig. 2(a), the equivalent network is obtained by assigning
a, = | and b, = 1. More importantly, this comparison also shows that
a 0O-contact (I-contact) fault on, say line x of a “‘programming™
configuration, can be represented in its equivalent network by simply
assigning a stuck-at-1 (stuck-at-0) fault to line a,. In other words,
we have shown that the SAE network for a PLA's input columns can
be easily obtained by replacing each AND gate of the PLA with a
corresponding nctwork of the type shown in Fig. 2(c). This replace-
ment in the example PLA of Fig. 1 results in the lcft part of Fig.
4.

Similar 10 the above, the stuck-at fault representation of contact
faults on the output columns of a PLA is obtained by considering the
OR gate network shown in Fig. 3(a). Assume here that input lines W',
and W3 correspond to some rows of a PLA and the gate output f
corresponds 10 some output line of the PLA. Moreover, as above, let

PPN . ~—

520
» " -
»
1D =D
{2)
[P | P
¥ ——
ab
-X' 4 [__Q_L VO Ul
oo o [) 0
03] o [X 1
(]
unl- } 1 y
) o y y o
O
() w
b
1%
o

Fig. 2. SAE network for AND gate.

"1"/ "

"z"/ "2—/
-~ X - W et

v, "l

wwX2%200 00 a1 30

1¥2
wfj ol o] oo
o o f 1 1] o

(b)
uf o | 2 3)
1) o) o} 2 1

“ D_ t (c)
czﬂ_r—_n
¥

Fig. 3. SAE network for OR gate.

¢, and ¢, denote Boolean variables whose value is 0(1) if lines W, and
W,, respectively, have a 0-contact (1-contact). Then the K-map [see
Fig. 3(b)] for fin terms of W, W3, ¢, and ¢ leads to the function

S=oW, + W, (2)

whose realization is shown in Fig. 3(c).

Here again, one easily sces that depending on the values of ¢y and
3, each of the four “programming™ configurations of Fig. 3(a) has
an equivafent network in Fig. 3(c). Also, as above, a 0-contact {1-
contact) fault on, say, line W, of a “programming™ configuration is
represented in its equivalent network as a stuck-at-1 (stuck-at-0) fault
on the ¢ line. Based on these developments, the SAE network for the
cxample PLA of Fig. 1 finally results in the network of Fig. 4.

Some important points should be mentioned here before we use this
SAE network model for multiple fault coverage analysis in the next
section. First of all, note from Fig. 4 that although the SAE network
contains fanout both at primary input lines and internal lines, the
internal line fanout does not reconverge. Therefore, when seen with
respect 10 any one output line, the corresponding subnetwork of an
SAE network is clearly an internal fanout-free network {12}, [13]}
consisting only of threc levels (because now levels 2 and 3 can be
merged into one level).

Second. note that an SAE network contains two types of primary
inputs: the n regular inpuis x1, X2, - - -, xa, and m{2n + p) contacts
inputs which correspond to m(2n + p) contacts of the associated
PLA. In the fauli-frec SAE network, each of these #1(2n + p) comact
inputs is assigned a permanent O or | depending on the value of the

HEE TRANSAC THONS ON COMPUTERS, VOL 29 N0 6, JUNE 1980

\f";‘%”

Fig. 4. The SAE neiwork for the PLA of Fig. 1.

corresponding contact in the PLLA. Thus, it should be clear that each
contact input line with the value 0(1) could contain only one fault of
interest, namely, sal (sa0), and that the other fault, sa0 (sal), on that
line would be meaningless. The resulting m(2n + p) single stuck-at
fauhts of interest on these m(2n + p) contact input lines would, of
course, correspond to the #(2# + p) single contact faults of the PLA.
Moreover, a multiple contact fault on a PLA would thus be repre-
sented by a multiple stuck-at fault on the contact input lines. For the
convenience of description in the remainder of this paper, we will,
whenever there is no change of ambiguity, use the terms “contact
fault(s)”" and “stuck-at fault(s) on contact input lines” interchan-
gably.

Finally, it is important to note that although an SAE network of
a PLA is far more complex than its cquivalent logic network {compare
Figs. 4 and 1{(c)}), a significant difference between the two represen-
tations is that whereas the former network represents the complete
PLA structure, the latter network sepresents only the logic realized
by the PLA.

H1. MULTIPLE CONTACT FAULT COVERAGE

As pointed out in the last section, each SAE network output line
is the output of an internal fanout-free combinational network. This
observation immediately suggests the possibility of using various
previously known results [8]-{11] about multiple stuck-at fault
coverage in internal fanout-free networks to determine the multiple
contact fault coverage in PLA’s. For example, it is well known that
in an irredundant, internal fanout-frec neiwork. every multiple
stuck-at fault of size 2 and 3 is covered by any test set that covers ail
the single stuck-at faults of the network. Therefore, we immediately
get the following from this well-known resuit.

Lemma 1: Each T, of an irredundant PLA covers every multipie
contact fault of size 2 and 3.

For multiple stuck-at faults of sizes greater than 3, it is shown in
[11] that the greatest lower bound on the capability of single stuck-at
test sets to cover multiple faults can be obtained by a simple table
look-up process. Thus, similar to Lemma 1, this result could be used
to determinc the greatest lower bound on the multiple contact fault
coverage capability of a T, ina PLA. However, we now show in the

following that it is possible to obtain better multiple contact fauh
coverage bounds by using the concept of masking than by applying
previously known results.

Definition 4: Given a row, say W;, and an input variabic, say x,.
let the contact between row W, and column X; be denoted by a,, and
let the contact between row W; and column x; be denoted by b, where
a,; and by; € {0, 1}. Then 4;; = (a;; + X;)(b;; + x,) will be referred to
as an internal variable for W, in terms of x;.

An internal variable A4;; is simply a function of two contact input

oW TR T T T T

TEEE TRANSACTIONS ON COMPULTERS. VOL C-29.NO 6, JUNE 1980

variables a,, and b, and one regular input variable x,. Using this
definition, the product function realized by each row can be conve-
niently written as

W,=A)Aiz Ain 3)

wherel €i < m.

Similar 1o Definition 4, let the contact between an output column
Ji. £k < pand arow W, be denoted by c,; where ci; € 10, 1}. Then
the cutput f; can be written as

Si=caWytcaWr+ -+ cxmWn
=cxi{dAnAiz - Ain) + a2 AnAzn - - Azl
+ +xm(AmAm2 Ama) 4)

Definition 5: A single stuck-at fault, say a,, is said to be masked
by another single stuck-at fault, say as, for an input vector X, if X,
tests a;, but does not test the simultaneous multiple fault a;a,.

With the help of above definitions, Lemmas 2 and 3 specify all the
necessary conditions under which masking takes place in a PLA.

Lemma 2: A O-contact fault in a2 row of a PLA can be masked only
by a }-contact fault in the same row.

Proof: Let a; be a O-contact fault, say on row 1 and column X,
That is, A1y = (@1 + X1)(bi1 #+ x;) where @y, = 0 and the fault o)
causes Ay, to become (1 + X{}{by1 + x;). Since the g;; = b;; = 0
combination is never allowed, we must have that b;; = 1. Assume
further now that this fault a is tested by an input.vector X, € T,
through the output line, say f,. Then since

H=cuWitcaWr+cusWi+ oW
and W, = A1 A2, -, A,

X, can test o iff for input X, we have

cuWr=cpWs=- =cymW, =0
(‘||=1
Ap=Ap=-=A,=1

and A;; = (0 + X;)(1 + x;) = O for the fault-free case and A = (]
+ %,)(1 + x}) = 1 in the presence of a;.

Let a; be any other single contact fault in PLA. We now show that
unless a is a 1-contact fault on row 1, it cannot mask «;. To begin,
suppose that a» is any contact fault on row i, i # 1. Then since ¢\, W;
= 0 in the fault-free case, the presence of a; would at the worst make
¢1:W; = 1. But this would imply that f; = 0 in the fault-free case and
/1 = 1 in the presence of the fault aja3, i.e., X, would also test the
double fault ay 3. Thus, a3 would not mask a; if az is on any row i,
i,

Suppose next that a; is a 0-contact fault on row 1. If this a; were
on row | and any one of the output columns 2, 3. - -, p, then it is clear
that the presence of a; woule never mask the testing of a; through
/1. Similarly, if a; were on row 1 and any input column, say j, then
we would have that the faulty A4,; = 1 and, hence, that «; does not
mask a;.

Thus, we have shown that unlcss a3 is a 1-contact fault on row 1,
it cannot mask a;. Even though this proof is given only for the case
when a, is on an input column, a similar proof for a; on an output
column can be easily provided. Q.ED.

Lemma 3: A 1-contact fault in a row of a PLA can be masked only
by a 0-contact fault in some other row.

Proof: The lemma can be proven in a similar manner to Lemma
2.

These two lemmas are important because they specify all the
conditions under which one contact faujt may be masked by another
contact fault in a PLA. Using these lemmas, the proof of Lemma 1
is straightforward [15).

Although Lemma 1 ensures that each T, covers all faults of sizes
2 and 3, a multiple contact fault of size 4 or larger might not be cov-
cred by each 7. In fact, Fig. 5 contains an example of a simple PLA
where four contact faults ay. ay. a3, aq are such that @y masks ax,
¥y masks a3, ay masks a, and a, masks a. Therefore, the multiple

521
X) Xy Xy Xy Xy Xy Xy X, X Xg X X f
0 1 1 1 *1 1 1 0 1 1 1 1 1
o a,
1 1 1 o0+ 1 1 1 1 1 1* 1 0 1
ay o,
f = ;1"4 + X%
X = {1,1,1,1,1,0) tests a, %) ¢ 0,
X, = (0,0,1,1,1,1) tests a,
Xy = (0,0,0,0,0,1) tests a,
X, = 1,1,0,1,0,1) tests a, 0, @ o,

4-way masking cycle

Fig. 5. PLA with four-way masking cycle.

fault a;apa304 is not detected by the four input vectors, shown in Fig.
5, which detect the single contact faults ay, az, a3, and ay. A similar
observation about multiple stuck-at {aults of size 4 is well known in
the literature [9), [11].

This phenomenon of four-way masking cycle, which requires two
pairs of a O-contact fault and a 1-contact fault on two separate rows,
is very crucial to the undetectability of a multiple contact fault by a
T, in an irredundant PLA.

Theorem 1: Every multiple contact fault in an irredundant PLA
is detected by any T provided the multiple fault does not contain pairs
of a 0-contact fault and a 1-contact fault on more than one row.

Proof: Clearly, if a multiple fault indeed contains pairs of a 0-
contact fault and a 1-contact fault on only one row, say i, then every
other row in the PLA which contains component single contact faults
of the multiple fault must contain either all the 0-contact faults or
all the 1-contact faults.

Now since row / contains a 0-contact and a 1-contact fault pair,
it might be possible, by Lemma 2, that the O-contact fault is masked
by the 1-contact fault. Moreover, by Lemma 3. this 1-contact fault
on row i might, in turn, be masked by some other 0-contact fauit in
some other row, say j # i. However, since by our assumption row j
does not contain any 1-contact fault, it is clear from Lemma 2 that
this O-contact fault cannot be masked by any single contact fault
component of the given multiple fault. In fact, it can furthermore be
seen from the proofl of Lemma 2 that this O-contact fault cannot even
be masked by any multiple contact fault component of the given
multiple fault. Therefore, any test in 7, which tests this O-contact will
test the given multiple contact fault as well. QE.D.

Although the condition in Theorem 1 is only a sufficient condition,
it is easy to show that most multiple faults of interest, such as faults
of size 8 and less |7). are included in this condition. We begin by
showing that Theorem 1 implies that most multiple contact faults of
size 4 are covered by cach T.

Theorem 2: Out of the total ("?7*") different contact faults of
size 4 in an irredundant PLA, at the most (7) - (n + p/2)* faults are
not covered by every 7. of the PLA.

Proof: By Theorem 1, every multiple fault of size 4 which docs
not form the four-way masking cycle is bound to be covered by each
T,. So Theorem 2 would immediately follow if we show that the
maximum number of contact faults of size 4 with four-way masking
s(F)-(n+p/)*

Let ajaraaacxg be one such contact fault. Since it must exist on
exactly some 2of the m rows of the PLA, there are (3) different pairs

s22

of two rows which are possible locations of ajaaias. Let W,y and
W,: be one of these (3 pairs, and assume that «; and aj exist on W;,
and a3 and a4 exist on W;,. The total number of contacts on each row
is, of course, 2n + p. Let the number of 0-contacts and)-contacts,
respectively, on row W, be s; and 2n + p — 5,, and on row W;; be
syand 2n + p — sy where s; > 0 and s2 > 0. Assuming now that a
and «; are 0-contact faults and a> and ay are 1-contact faults, we note
that all the different ways of having such a,, a3, a3, and as on W;;
and W;, are

(s.) . (Zn +p- s.) i (sz)) (2n +p-— s2)
1 i 1 1
=5:2n+p— 5)s2)(2n+p —53). (5)

Clearly, the maximum value of the expression in (5) results when

+
s TR0
It thus follows that the maximum number of contact faults of size
4 with four-way masking is (') -(n + p/2)4. Q.E.D.

For m = 48, n = 16, and p = 8, the number (§) - (n + p/2)%isa
mere 0.03 percent of the total (™25*"). Thus, 99.97 percent of all
multiple contact faults of size 4 are bound to be covered by each 7,
in a typical irredundant PLA. °

Theorem 2 can now be generalized for multiple faults of larger
sizes, as follows. For the proof of this theorem, see [15].

Theorem 3: Out of the total ("27+") r >4 different faults of size
r in an irredundant PLA. at the most (§)-(n + p/2)4 . ("Cntpi—4)
faults are not covered by every 7, of the PLA.

Note that the bound given in Theorem 3 is simply an upper bound.
In fact, for large values of r, the bound (') «(n + p/2)% - (m(27*7)~)
becomes greater than (™*7*"). However, for small values of »,
Theorem 3 is very convenient to use. For example, when m = 48,
= 16.and p = 8, Theorem 3 shows that more than 98 percent of all
multiple contact faults of size 8 and less in an irredundant PLA are
covered by each T of the PLA. This result becomes very significant
in the light of a recent paper (7], wherein it is shown that the con-
sideration of faults of size 8 and less is sufficient for most LSI chips.
Thus, in conclusion, we have shown that even though contact faults
in PLA's exhibit the well-known masking phenomenon, yet more than
98 percent of all multiple contact faults of interest are covered by their
single contact fault test sets.

1V. CONCLUSION

The problem of multiple fault coverage by single contact fault test
sets in PLA’s has been considered in this paper. Since a PLA is con-
ceptually a two-level network, it may seem that each complete single
contact fault test set for a PLA must inherently cover all of its multiple
contact faults as well. However, in Section 11 an SAE (stuck-at
equivalent) network of 2 PLA was developed to show that such is not
the case in general. Nonetheless, it is also shown by using SAE net-
works that more than 98 percent of all muitiple contact faults of in-
terest are, indeed, covered by every single fault test set in an irre-
dundant PLA.

The results mentioned above have been developed for AND-OR
PLA’s with single input decoders only. However, similar results for
NOR NOR PLA’s with two input decoders are easily derived. More
specifically, the personality for a NOR NOR PLA is dctermined by
using Definition 1 for both input and output columns. Moreover, since
a NOR gate is an OR followed by a NOT, the SAE network for such
a PLA is obtained by using the network of Fig. 3. Finally, an internal
variable A, is then defined as 4;, = a;,X,X;41 + b, X;x,41 + €ijX X4
+dijx;x;ywherei=1,2,- - .mandj=1,3,-- ,n— 1 Usingthese
formulations, results similar to Lemmas 1-4 and Theorems 1-3 of

“Sections 11 and 1] can be casily proven.

In the above analysis, we had tacitly assumed that cach single
comtact fault of a PLA is detectable. But. in practice, most PLA's tend
to contain various undetectable faults. The multiple fault coverage
capability of such PLA’s, by their single fault test sets, is generally
reduced. This claim is best illustrated by considering a double contact
fault, say a O-contact fault and a 1-contact fault, on some row of a

TEEE TRANSACTIONS ON COMPUTERS, VOL .29 NO 6. JUNE 1980

PLA. By Lemmas 2 and 3. we then know that even if the 1-contact
fault masked the 0-contact fault, the converse is never true. Thus, the
double fault is sure to be covered by a complete single fault test set
as long as the §-contact fault is detectable. However, if the 1-contact
fault is undetectable and it masks the O-contact fault, then the double
fault might not be detected by a complete single fault test set.

The above illustration can similarly be carried out for muitiple
faults of larger sizes. Thus, it seems evident that the multiple fault
coverage capability of a 7 in a redundant PLA will be highly de-
pendent on the personality of the PLA and the redundant contacts.
In other words, no general results like Theorems 1 10 3 of the Jast
section can be specified for redundant PLA’s. Nonetheless, one easily
notices from the proof of Theorem 1 that any multiple contact fault,
which contains at least one detectable 0-contact fault component in
any row containing only 0-contact fault components, would always
be covered by each T,. Further work along these lines, however, needs
to be done.

Finally, the advantage of the SAE network models of PLA’s in
areas other than the multiple contact fault coverage problem is worth
mentioning here. Note, for instance, that a T, is basically an in-
complete, but very specific single stuck-at fault test set for a SAE
network. Thus, by taking into account the explicit structure possessed
by all SAE networks, it can be easily proven that a T in general will
cover most of the single stuck-at faults of a SAE network. Moreover,
it will then immediately follow that each T also covers most stuck-at
faults of sizes up to 8 (11]. In short, a 7, for a PLA can be considered
a very effective test set for all single and multiple contact and stuck-at
faults of interest.

ACKNOWLEDGMENT

The author would like to express his sincere gratitude to Prof. G.
M. Masson for his support and encouragement throughout this
work.

REFERENCES

[1] H. Fleisher and L. 1. Maissel, “*An introduction 10 array logic,” [BM
J. Res. Develop., vol. 19, pp. 98 - 109, Mar. 1975,

[2] D. L.Ostapko and S. J. Hong, “Fault analysis and test generation for
programmable logic arrays (PLA),” in Proc. FTCS-8. France, 1978.

[3) C. W.Cha. “A testing strategy for PLAs,” IBM Thomas J. Watson Res.
Cen.. Yorktown Heights, NY 10598, Res. Rep. RC 6832 (# 29313).
Nov. 1977.

{4] J. E. Smith, “Detection of faults in programmable logic.” }EEE Comput.

Soc. Repository, R-78-2. JEEE Comput. Soc., Long Beach, CA.

E. 1. Muelhldorf and T. W. Williams, “Optimized stuck fault 1est pattern

gencration for PLLA macros,” in Dig. Semiconductor Test Symp.. Cherry

Hill, NJ, IEEE Catalog Number 77CH126-7C, Oct. 25-27,1977, pp.

88-101.

[6) M. A. Brcuer and A. D. Friedman, Diagnosis and Reliable Design of
Digital Systems. Woodland Hills, CA: Computer Science Press,
1976.

{7} L.H. Goldstein. A probabilistic analvsis of multiple faults in LS! cir-
cuits.” IEEE Comput. Soc. Repository, R-77-304, 1EEE Comput. Soc..
Long Beach, CA.

[8] D.R.Schertzand G. Mectze, “On the design of multiple fault diagnosable
nctworks,” JEEE Trans. Comput., vol. C-21, pp. 13-36, Jan. 1972,

19] J. W.Gault,). P. Robinson, and S. M. Reddy. “Multiple fault detection
in combinational nctworks,” JEEE Trans. Comput., vol. C-21, pp.
31-36. Jan. 1972.

[10] C.T.Kuand G. M. Masson, “The Boolean difference and multiple fauit
analysis,” JEEE Trans. Compul., vol. C-24, pp. 62-71, Jan. 1975,

[11] V. K. Agarwal and G. M. Masson, “Generic fault characterizations for
1able-look-up coverage bounding.” IEEE Trans. Compui., vol. C-29,
Mar. 19%0.

[12] 4. P. Haves, “The fanout structure of switching functions.” J. Ass.
Compui. Mach.. vol. 22, pp. §51-571, Oct. 1975,

[13] V. K. Agarwal. “Fanout-frec Boolcan functions and L-expressions,”
in Proc. 1978 Conf. Inform. Sci. Syst., The Johns Hopkins Univ.. Bal-
timore, MD, 1978, pp. 227-233.

{14] D.C.Bossen and S. J. Hong. “*Cause effect analysis for multiple faults
in combinational nctworks,” JEEE Trans. Comput., vol. C-20, pp
1252-1257.

115) V. K. Agarwal. “Muhipic fault detection in programmabic logic arraw.”
Dep. Elec. Eng., McGill Univ., Montreal, P.Q.. Canada. Rep. 79-4

[s

IEFE TRANSACTIONS ON COMPUTERS, VOL C-29, NO 4, APRIL 1980

Generic Fault Characterizations for Table
Look-Up Coverage Bounding

VINOD K. AGARWAL, SENIOR MEMBER, 1IEEE, AND GERALD M. MASSON, SENIOR MEMBER, IEEE

Abstract—Given any combinational, internal fan-out-free network
and any complete single fault detection test set (SFDTS) for the net-
work, we consider in this paper the problem of determining the minimal
extent to which that SFDTS will cover multiple faults in the network.
The basis of our approach is the development of a generic perspective
to multiple faults which uses a representation of such faults called an
L-expression. This perspective leads to a technique for obtaining the
greatest lower bound on the multiple fauit coverage capability of an
SFDTS by means of a simple table look-up process. In addition to
generalizing previously known results regarding multiple fault cover-
age, two particularly interesting results obtained from this approach
are as follows:

1) On the average, every SFDTS for an internal fan-out-free net-
work covers 92 percent of all multiple faults of sizes 8 and less.

2) On the average, every SFDTS for an internal fan-out-free net-
work covers at least 46.1 percent of all multiple faults.

Index Terms—Coverage bounds, coverage table, fault vectors,
generic representations, L-expressions, internal fan-out-free networks,
single and multiple fault detection.

I. INTRODUCTION

HE increasing density of logic on integrated circuit chips

together with the emerging LSI design practice [23] of
implementing sequential networks in the form of register to
register combinational logic have led to a renewed interest in
various unsolved problems associated with the detection of
stuck-type faults in combinational networks. Perhaps the most
basic of such problems is the generation of tests which effi-
ciently detect the presence of multiple faults in a given com-
binational network. The complexity of this problem stems from
the fact that in a network of p lines, there are 37-1 different
multiple faults which might exist. To combat this prohibitively
large number of faults, various concepts such as functional
equivalence [24] and fault collasping [25] have been devel-
oped. Testing algorithms [26), [27) based on these concepts
show that instead of considering 37-1 multiple faults, it is
possible to consider a smaller number of faults while still being
able to detect the presence of any of the 37-1 faults. However,
even the use of these algorithms does not provide a satisfactory
solution for large networks.

A practical compromise often employed to alleviate this
multiple fault detection problem is to use a complete single
fault detection test set (SFDTS) for a network to cover its
multiple faults as well. However, again because of the large

Manuscript received August 4, 1977; revised August 13, 1979. This work
was supported by the Office of Naval Rescarch under Contract NOQOI4-
75-C-1196.

V. K. Agarwal is with the Department of Flectrical Engincering, McGill
University, Montreal, P.Q., Canada.

G. M. Masson is with the Department of Electrical Enginecring. The Johns
Hopkins University, Baltimore, MD 21218.

number of multiple faults involved, this compromise has had
little theoretical justification or investigation other than the
establishment of such results as an SFDTS is a multipie fault
detection test set (MFDTS) for two-level networks or every
SFDTS in an internal fan-out-free network covers all multiple
faults of sizes 2 and 3 [10]-[13]. Motivated by the above, the
authors previously introduced the concepts of the functional
form of multiple faults [9) and of recursive coverage projection
of test sets [10] 1o theoretically investigate more general sit-
uations. These developments led 1o interesting extensions of
previously known resuits [11]-{13] and new characterizations
of some special cases of multiple faults. In this paper we con-
tinue this work by developing a general approach to quanti-
tatively evaluate the validity of the common, practical com-
promise mentioned above. This approach leads to a technique
for obtaining the greatest lower bound on the multiple fault
coverage capability of a SFDTS on a set of lines by means of
a simple table look-up process. Two particularly interesting
results obtained using this table are as follows.

1) On the average, every SFDTS for an internal fan-out-
free network covers 92 percent of all multiple faults of sizes
8 and less.

2) On the average, every SFDTS for an internal fan-out-
free network covers at least 46.1 percent of all multiple
faults.

II. NETWORK MODEL AND NOTATIONAL
PRELIMINARIES

A. Network Model

For multiple fault detection purposes, it is convenient 10
classify a single output combinational switching network into
one of the following three classes:

CI: Class of Fan-Out-Free Networks [1]1-[3]. [28]: A
network in which no line fans out to two or more lines is re-
ferred to as a fan-out-free network [see Fig. 1(a)].

C2: Class of Internal Fan-Oui-Free Networks (8)-[11]:
In an internal fan-out-free network, fan-out is allowed on the
primary input lines only [see Fig. 1(b)].

C3: Class of Reconvergent-Fan-Out Networks [12]-]15}:
A network from this class can have fan-out on any line [see Fig.
1(¢c)].

Clearly, Cl ¢ C2 c C3. The reason this classification
scheme is centered around the amount of fan-out present in
a network is that fan-out is the single most important factor
which affects the complexity of generating test sets for net-
works. Indeed, networks of Class C1I are the simplest to test
and networks of Class C3 are the most difficult. In fact, very
simple and useful methods to generate MFDTS's for networks
of Class C! are well known [4)-[7] in the literature. On the

.0018-9340/80/0400-0288%00.75 © 1980 IEEE

o

AGARWAL AND MASSON TABLL l()();\ UP COVERAGLE BOUNDING

Fig. 1. Diustration of three classes of neiworks.

other hand, it is equally well known that the generation of an
MFDTS for a complex network of Class C3 can be a prohib-
itively difficult task.

In terms of the capability of each of these classes of networks
to realize Boolean functions, it is known [1], [3] that functions
which can be realized by Class C/ are very limited. However,
it can be shown that Classes C2 and (3 are complete in the
sense that every Boolean function can be realized by a network
of Class C2 and, therefore, also of Class C3. The advantage
of Class C3 networks over Class C2 networks is, of course, that
the former type of networks require fewer gates for the reali-
zation of same functions. However, since Class C2 is a com-
plete class in the sense just mentioned above and since Class
C2 networks are easier to manipulate than Class C3 networks
from a multiple fault detection point of view, we will restrict
our considerations in this paper to nctworks of Class C2 only.
This is not a severe limitation because each network of Class
€3 can be converted 10 a network of Class €2 [13]. Hence, our
results can be exploited for the networks of Class C3 as
well.

Thus, let N denote an internal fan-out-free network such
as that shown in Fig. 1(b). For the convenience of analysis in
this paper, we will make two simplifving assumptions on the
line faults which can exist in such networks. First of all, since
a stem fault {such as the one shown in Fig. 1({b)] is functionally
equivalent to some branch faults (lines 2 and 3 s-a-1), we will
assume that each multiple fault under consideration is such
that it does not include any stem faults. Second, since two or
more simultaneous single faults (that is, one multiple fault)
on the same path from a primary input to the primary output
are collectively functionally equivalent to the single fault
closest to the primary output on that path, we will assume that
each mulitiple fault under consideration is such that it has at
the most one single fault on each such path. It should be clear
that these two assumptions do not in any way reduce the

Iky

number of effective multiple faults under consideration. The
implications of these two assumptions will be soon made ap-
parent.

B. Notational Preliminaries

To introduce the notational preliminaries used in the paper,
consider again the internal fan-out-free network, NV, shown in
Fig. 1(b). Let K =12, 4, 6, 8} be a set of 4 lines in N. A simul-
taneous multiple stuck-type fault involving all the four lines
of K will be denoted as a binary fault vector a'y = (a3, ag. ae.
ay), where a,€{0, 1}, 1eK, and i is an index parameter. Clearly,
there can be 24 different such fault vectors on K. The set of
these 24 fault vectors on K will be denoted by Fp = ta}, ai,
-, a3’} and referred 10 as the fault complex on K. Whenever
possible, we will write ay instead of oy 10 denote a general
element of Fyx.

Next, let ¥ = x3, Y4 = x3, Y = x5, and Yy = x7 be the
Boolean functions realized by lines 2, 4, 6, and 8, respectively.
These Vs will be referred to as line variables 10 differentiatc
them from the primary input variables. The primary output
function of V in terms of the primary input variables, x,, x3.
-+, x7, and the line variables, Y3, Y. Ye. Y. will be written
as Z|X; Y], where

Z[X: YK]=()71}’2+X2Y4)(X4)’6+:\:6y8)- (2-])

Yo =1Va Y4 Yo Yeland X = {x), X2, - - - x37}. Given a specific
input vector, denoted as X, the Boolean output of N will then
be Z{X;; ¥Yx] when NV is fault-free, and Z{X;; ax] when a ay
€ Fyexistsin V.

Note that each Y, € Y appears exactly once in Z{X: Yy].
In fact, becausc of the two assumptions made earlier about the
multiple faults in internal fan-out-free networks, it should be
clear that any set K of lines we consider will always be such
that Z[X; Yx] can be expressed in a form whereineach ¥, <
Yx occurs exactly once in the expression, either as Y, or Y.
Such a form is referred to as the fan-out-free form [3]. In the
following cach Z[X; Y] will always be assumed to have been
expressed in the fan-out-free form.

Definition 1: Two sets, say,] and J are said to form a par-
tition of K if I and J are disjoint sets of lines in N such that /
u J = K and there exist Boolean functions, say, H[X; Y,].
M{X; Y,]. and O[X] so that Z[X; Y] = (H|X; Y, 1=M|X:
151) + O{X]. where « denotes Boolean OR, **+, or Boolean
AND, "

Note that because of the fan-out-free form of Z[X; Yy],
each K will always have at least one partition. For instance,
in our previous example, / = |2, 4}and J = {6, 8} form a parti-
tion of K with H[X. Yl] =(x,Y>+ x2Ya). M[X‘, YJ] = (x4Ye6
+ X¢Y3), and O[X] = 0. Using this concept of partition in a
recursive manner, it is possible to definc an ordering on any
set of lines in V. More particularly, suppose that sets J and J
were some ordered sets 7 = (fy,i2. - ip) and J = (jy. jz. -
Jq¢)- Then the set K of which 7 and J form a partition would be
ordered as K = (i1, i3, . ip. j1. j2. v Jg). With this ordering
on K, it is possible to write Z| X; Y] such thateach ¥, € Y,
appears in Z|X; Y] in the same order (from left to right) as
the corresponding ¢ appears in K. For a given K, such an or-
dered Z[X; Y] will be unique except for variations possible

290

because of the associative and commutative propertics of “*+”
and . .

Another advantage of the ordering scheme is that the fault
complex on K can be very conveniently expressed in terms of
fault complexes on its partition sets. In particular note that if
1. J, and K were ordered as mentioned above, then the Car-
tesian product F; X F; will be isomorphic to Fx. Thus, for
notational convenience we will write that Fy = F;, X F,
whenever / and J form a partition of K. More generaily, if 4
< F;and B ¢ F,. A X B will represent a subset of Fx.

C. Motivation

Let T, be an SFDTS for N, K be a set of lines in NV, and
suppose that we want to determine all the fault vectors of Fy
which are covered by T. Since a ax € Fx is covered by an X;
Hf Z[X;: Yx] # Z[X;; ag), itis clear that any method used
to solve this problem would directly or indirectly need all the
information contained in Z[X; Yx}. However, because Z[.X;
Y] is inherently dependent o the particular K and N under
consideration, it is equally obvious that al} such methods are
bound to be impractical for any general use. Thus our moti-
vation is to develop a method which will utilize the minimal
possible information about K, N, and Ty, and still be able to
determine some reasonable information about the capability
of T to cover Fx. It will be shown in this paper that it is pos-
sible to determine the greatest lower bound on the number of
fault vectors of Fx covered by any SFDTS for N simply by a
1able look-up process. In other words, the information used
about K and N will be such that it can be tabularized for
general use. However, as a consequence of not using complete
information about Z[X: Yx]. we will get only greatest lower
bounds on coverage.

The main concept developed to obtain our results is that of
the generic representation of logical interconnection of line
variables. To first illustrate what is meant by the logical in-
terconnection of line variables, consider again the set K = {2,
4, 6, 8} of lines in N of Fig. 1(b), wherein Z[X; Y] = (X;Y>
+ x2Y3)(xaYe + X¢¥3). Given any two line variables, such as
Y2 and Y4, when we refer to their logical interconnection we
mean the logical AND or logical OR operation which occurs
between them in the fan-out-free form of Z[X; Yx]. Thus, >
and Y4 are logically Ored, and so are Y and V3. But ¥; and
Y are logically ANDed, as are Y and Y. Yand Yg,and Y,
and Ysg. This describes the complete logical interconnection
of all the line variables for the given K, and can be succinctly
restated as follows: Y, and Y, are logically ORed and the two
together are logically ANDed with the logically ORed Y and
Y. As another example, let Z[X; ¥Yx] = (x1 Y3 + X3x4}V3) for
K = {2, 3} in some N. Note that even though Z[X: Y] is
written in the fan-out-free form, the logical interconnection
between Y; and Y5 is that of NOR, which is not included in our
definition. By using the Demorgan’s Law, however, Z[X; Y]
can be rewritten as (¥, + Y3)(x3 + X4 + ¥3), indicating that
the logical interconnection between Y3 and Y is that of AND.
Thus, to use our concept it will be 2--umed in the following that
Z[X. Yx] is always written such that there is no complemen-
tation operation involving two or more line variables. Also note
from the above two examples that this concept of logical in-

IFEE TRANSACTIONS ON COMELTERS VYOI € 29, NO 4, APRIL 1980

terconnection of line variables is not concerned with whether
or not a line variable is complemented, or whether primary
input variables are ANDed or ORed with a line variable.

Given the information on the logical interconnection of line
variables for a set K in V, by the generic representation of this
information we mean a representation in which no information
is kept of the particular line variables involved but only of how
these line variables are logically interconnected. Thus, the
generic representation in the case of Z[X; Y] = (x,Y2 +
x2Y4)(x4Y6 + XoY3) is that there are two logically ANDed
pairs of two logically ORed line variables each. We will show
in the next section that such generic representations of any set
of lines in any network can be conveniently expressed in terms
of L-expressions.

H]. L-EXPRESSIONS AND GENERIC REPRESENTATION

A. L-Expressions

An L-expression is an algebraic expression consisting of a
given number of “L” symbols which are interconnected by
commutative and associative *“+™ and **-” operators and pa-
rentheses. More formally, we define L-expressions as fol-
lows:
Definition 2:
a) (L)isan L-expression. .
b) If (P)and (Q) are L-expressions, so are ({P) + (0))
and ((P) - (Q)) i
c) Nothing else is an L-expression unless its being so
follows from a repeated use of a) and b).
Two L-expressions are said 1o be “equal™ or “same™ if one
can be made identical to the other by using commutative and
associative properties of “+"" and “*-”", namely,

(P)+(Q)=(Q)+ (P)
(P)-(Q)=(Q)-(P)

(P)+ ((Q) + (R)) = ((P) + (Q)) + (R)
(P)-((@)-(R)) = ((P)- (D)) - (R).

Thus, for example, ((L) + (L)) - (L) is the same as (L) - ((L)
+ (L)). For the sake of convenience, the use of parentheses in
writing L-expressions will be minimized whenever there is no
confusion. Moreover, we will replace all the - sign appear-
ances by simple concatenations. Using these conventions, all
L-expressions consisting of 4 and less L™ symbols are shown
in Table 1.

Let L(v) denote the set of all L-expressions each of which
consists of ¢ "L symbols. Each clement of L{¢) will be referred
to as an L-expression of size v, and denotedas L}, i= 1,2, - -,
[L(v}]. or simply as L, whenever possible. Note now from
Table I and Definition 2 that for all ¢ > 1, there is an inherent
duality among all L-expressions of L{(v). More particularly,
we have thatif L, = L, + L, (or, L. = L,L,), forsome L, €
L(p)and L, € L(q)}, p+ q = v, then there exists the dual £.-
expression, denoted LY, of L, in L(v) such that L? = Lard
(correspondingly, L? = L4+ L9), where of course LY € L(p)
and L§ € L(q) are the dual L-expressions of L, and L, re-
spectively. An L-cexpression L, will be said to be essentially-
AND (essentially-OR) if L. = L,L, (L, = L, + L,) for some
L, and L,. Clearly, each L-expression is either essentially-AND

s

e ——

AGARWAL AND

MASSON TABEE LOOK-UP COVERAGE BOUNDING

TABLE)

B ow N -

tssenhally - AND

L
u
e ety
LLLL . LLaLsbr |
els UL . Welly L
telt ey

tsyentially OR

|8

[}
Lelel | Lol
Lotelel Leteit
LEeL tebrstl
(R3S

or essentially-OR but not both, and the dual of an essentially-
AND (essentially-OR) L-expression is an essentially-OR {es-
sentially-AND) L-expression.

We end this subsection with the following two lemmas about
the cardinality of the set L(v). For more details about the
enumeration of different L-expressions the reader is referred
10 [17) and [9] wherein it is shown that the enumeration of
[L(r)] is the same as the enumeration of two-terminal se-
ries-parallel networks [18]-[20]. | L(v)|. for all v < 10, is
listed in Table I1. .

Lemma 1: Given any set L(v), v 2 2, there are exactly | L(v
— 1)] essentially-AND (essentially OR) L-expressions in L(v:)
each of which can be written as L,_,L (correspondingly, as
L)+ L), where L,_yeL(v — 1).

The proof of this lemma follows from Definition 2.

Lemma 2: For large v, |L(v)] = (0.43) X (3.56)" X =32
Thus, |L(r — 1)| =~ 0.28 |L(v)|.

The proof of this lemma can be found in {19].

B. Generic Representation

Consider Z[X: ¥Yx] = (X3 Y2+ x5V) (xaYe + X Ys) for K
= |2, 4, 6, 8} in Fig. 1(b). From our previous discussions, we
know that the information about the generic representation
of the logical interconnection of line variables of Y in this case
is that there are two logically-ANDed pairs of two logically
ORed line variables each. This informatiun is unambiguously
and conveniently represented by the L-exvression (L + L)(L
+ L)if each L™ is assumed to stand for a line variable. More
particularly, given any set K of lines in /¥, we can obtain by
using the following procedure an L-expression from the cor-
responding Z[.X: Y] such that the resulting L-expression will
generically represent the logical imerconnection of line vari-
ables in Z[X: Yx].

Procedure: Given a Z[X Y] in the fan-out-free form, | K|
= ¢, first replace each literal of X'in Z[X; Y] bya “0" or 1™
such that the simplified expression consists only of all the v line
variables. Then, replace each line variable in the simplified
expression by “L”. The resulting cxpression is the rcquired
L-expression, L, € L(v).

It is obvious from this procedure and the fact that each Z{X
Yx] can be uniquely written in an ordered, fan-out-free form
that the resulting L-expression will be unique for a given set
of lines. Such an L-expression will be said to be the associated
L-expression with K.

In the remainder of this paper we will show that given a set
K of ¢ lines in any N and its associated L-expression, L, . it is
possible 1o determine the greatest lower bound on the number
of fault vectors of Fy covered by every SFDTS for N simply
by knowing L,. An immediate corollary of this result is that

291

TABLE 11
v {lvif
1)
2 ?
3 4
4 10
5 24
[} &
7 180
8 522
9 1532
10 424

for all possible sets of ¢ lines, in al) possible internal fan-out-
free networks, with which the associated L-expression is the
same, the greatest lower bound on the coverage will also be the
same. Thus, if the greatest lower bound corresponding to each
possible L-expression were recorded in a table, then given any
set K of lines in any N, the bound may be obtained simply by
a table look-up process. This general and simple use of L-
expressions will be the result developed and validated in the
following sections of the paper.

1V. COVERAGE TABLE

A. The Concept of a Coverage Table

Consider an internal fan-out-free network N, and a set K
of ¢ lines in N. Let T be any set of input vectors which detects
all 2r single stuck-type faults on K. (7, of course, could also
detect other faults.) Relative to N, let ¢(K,T) denote the
number of fault vectors of Fy also detected by 7. Finally ¢(K)
be the minimum ¢(K,T) for all such T in N. Since cach
SFDTS for N automatically covers all 2¢ single faults on K,
it follows that at least ¢(K) fault vectors of Fy must be covered
by each SFDTS for N.

Suppose now that the L-expression associated with K is £,
In Section 1V-B an algorithm is presented which, given an
L-expression such as L,., determines a unique number, denoted
as 8(L,). In the next section we will prove that 8(L,) is the
greatest lower bound on ¢(K) in the following sense:

Property Pl: Given any N and a set K of ¢ lines with which
L, is the associated L-expression,

B(L,) < ¢(K).

Property P2: There exists at lcast one N with a set A of ¢
lines with which L, is the associated L-expression and

In other words, each SFDTS of N covers at least 8(L,) fault
vectors of Fi. and there exists at least one N and an SFDTS
for it which covers no more than 6(L,) fault vectors of F,.
Thus, (L,) provides the greatest lower bound on the capability
of any SFDTS to cover fault vectors of Fx. Note that 8(L,)
is the greatest lower bound over all possible sets of lines in all
possible networks with which the associated L-expression is
L,. Thus, it might happen in a general nctwork that each
SFDTS for the network covers more than 6(L,.) fault vectors
of each set of lines with the associated L-expression, L. Re-
gardless, our main interest lies only in the most general nature
of multiple fault coverage capabilities of single fault detection
1est sets.

The table in which all £L-expressions and their corresponding

m' :‘...., aan P -t G e e

292 JEEF TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 4. APRIL 1980
TABLE 1))

i i i i
v L, o (L) v L o (L)
1 L 2 6 (LLL+L} {L+L) 56
((L+L) L4L) {L+L) 56
Lt+L 4 (LL4L4L) (L+L) 54
LL 4 (L+L4L+L) (L+L) 56
3 b 8 7 ((LL4LYL4L) (L+L) 112
LLtL 8 {(L+L+L) L+L) (L+L) 112
(LALIL 8 ((L+L) (L4L) 4L} (L41) 104
LLL 8 ({L+LILL+L) (L+L) 112
4 LtLALsL 16 (LLLL+L) (L+L) 112
LL*L4L 16 ((L+L) L+LL) {L+L} 104
{L+L) L+L 16 (LLL+LL) (L+L) 106
LLL+L 16 ({L+L) L+L+L} (L+L) 112
(L4LfL)L 16 {LLL+L+L) (L+L) 112
(LL+L)L 16 (LL+LL4L) (L+L) 104
(L+L)LL 16 (LL+L+L+L) (L+L) 106
LLLL 16 {L¥L+L+LAL) (L+L) 112
(L+L) {L+L) 14 {(L4+L) L+L} (LL+L) 106
LL+LL 14 { (L+L) L+L) (L+L+L) 104
(LLL+L) {LL+L) 106
5 (LLYL) (L+L) 28 (LLL+L) (L+L4L) 106
(L4L4L) (L+L) 28 (LL+LL) (LL+L) 106
6 (LL+L) (LL+L) 54 (LL+LL) (L+L+L) 102
(LL4L) (L+L+L} 54 (LL+L4L) (LL+L) 100
* (L4L4L) (L+L+L) 52 (LL+L+4L) (L4L+L) 102
(L+L) (L+L) (L+L) 52 (L+L+L4L) (LL+L) 106
(LL+LL) (L+L) 56 (L+L+L+L) {L+L+L) 106
(LL4L) (L+L) (L+L) 106
(L+L+L) (L+L) (L+L) 102

#(L.)'s are listed will be referred to as the Coverage Table.
Table 111 shows the Coverage Table in a compact form (see
Section [V-C) for all L-expressions of size 7 and less. Various
ramifications of this table are considered later in the paper.

B. 8(L,) Calculation

To determine 6(L,), we give the following algorithm in
which the reader’s familiarity with the cubical complex
notation [21], [22] is assumed.

Coverage Algorithm:

Input: L., an L-expression consisting of v L's.

Output: B(L,..), the greatest lower bound on the minimum
coverage.

Comments: This algorithm uses two sets of ¢-dimensional
cubes denoted, respectively, as DO(L,) and D'(L,). These sets
are determined by a recursion. This recursion will at times

utilize the r-dimensional upit cube S, = (xx - -x), r 2 1.
f S R

r
Two families of subsets of D%(L,.) and D'(L,) are next found,
and magnitudes of two sets of representatives (SR’s) for these
families finally provide the required 8(L,). A set of repre-
sentatives of a family of sets of cubes, say JC', C2, - - -, C"} is
defined as a set of cubes C = {ey, 2, - - -, ¢,} such that for each
set C', | <1 < n, there exists at least one element, say, ¢; in
C which also belongs to (.
Method:

Step I: 1fv = 1,set D(L,.) = (0)and D}(L,.) = (1). Go
to Step 4.

Step 2:ifv 2 2, let Lpand Ly, p+ ¢ =, besuch that L,
=L,+ L,or L, = L,L,. Furthermore, assume that DO(L,),

D(L,), DO(L,), and D'(L,) are known by previous recursive
use of this algorithm.

Step 3(a): If L, = L, + L, set D%(L,) = D%(L,) X
D(L,) and D'(L,) = (D'(L,) X Sg) u (S, X D'(L,)).

Step 3(b): If L, = L, Ly, set D(L,) = (DXL,) X S,) u
(S, X DY(L,)) and DV(L,) = D'(L,) X D'(L,).

Step 4: Let DY(L,) be the set of all those cubes of DO(L,.)
each of which has a *“0" in the 1th coordinate position, where
1=1,2, - ¢ Similarly, let D}(L,) be the set of all those cubes
of DY(L,) each of which has a 1 in the rth coordinate position.
Moreover, let PO(L,) denote an SR of the family {D(L,).
DX(L.). -~ DX(L.)}and P'(L,) an SR of the family {D}(L,),
Di(Ly), - - - D)(L.)}. Finally, let ||C]} denote the number of
O-cubes in a set, C, of cubes.

Step 5: Let P,,(L,) be an SR such that || P%,(L,.)}] <
HPO(L)|| for every SR PO(L,). Similarly, let PL,(L.) be an
SR such that ||PLi(L:)]} < J|PY(L.)]} for every SR
PYL,).

Step 6: 0(L.) = || Poin(L) || + || Phinl L)).

Stop.
The following example illustrates the algorithm.

Consider L, =(L+ L) (L+ L).c =4 LettingL, =L+ L
and Ly = L + L, we first determine DO(L + L)and D'(L + L)
and then use these sets to determine D%(L,.) and D(L,.). Thus,
from Step 3(a)

DL+ L) = DOL) x DXL)
(00)

and
DL+ L)

(DN(L) X S)) u (S, X DNL)
= (Ix,x1).

Now using Step 3(b) next, we have

A L R

B A S

AGARWAL AND MASSON TABLE 1OOKN-UP COVERAGE ROUNDING

DYUL.)= (DL + L)X S3) u(S; X DL+ L))
= (00xx, xx00)
and
DU(L,)Y=D(L+L)yxDY(L+1L)
= (Ixix, lxx], x1ix, x1x1).

Moving on to Step 4 yields

DY(L,) = DY(L,) = (00xx)

Dg(Lv) = De(Lu) = (xx00)

Di(L,) = (I1x1x, Ixx1)

Di(L) = (x11x, x1x1)

Di(L,) = (1x1x, x11x)
and

Di(L,) = (1xx1, x1x1).

Note that there is only one SR of the family {D(L,). - - -,
DL,)} namely, P, (L,) = (00xx, xx00). However, there are
various SR’s of the second family. Examining the possibilities
shows that the two candidates for PL;.(L.) are (1x1x, x1x1)
and (x11x, 1xx1). Thus, we inally get that

B(Ll') = ”Promn(Lv)” + llPr‘nnn(LL)l'
=7+7
=14,

From this example (and anticipating our proofs in the fol-
lowing section that 8(L,) so calculated does, indeed, have
Properties P1 and P2), we can conclude here that for any set
of 4 lines which are generically represented by (L + L)(L +
L) in any internal fan-out-free network, any set of input vectors
which detects all of the 8 single faults on these lines also detects
at least 14 of the 16 multiple faults involving all 4 of these
lines.

It should be cited that the most difficult aspect of the im-
plemeniation of the Coverage Algorithm is clearly the ex-
haustive step of determining P%..(L,.) and P.,(L.). However,
since each 8(L,,) entry in the Coverage Table must be calcu-
lated only once, such complexity is amortized by its general
use. Moreover, this situation is alleviated somewhat by the
consideration of the following subsection.

C. Compacting the Coverage Table

Note from Table 11 that there are 24, 66, and 180 L-ex-
pressions of sizes, 5, 6, and 7. respectively. Yet, for these three
sizes only 2, 9, and 24 L-expressions, respectively, have been
listed in Tabie 111. This is a result of the following two lemmas,
the proofs of which are om ited here but are directly based on
the Coverage Algorithm [17].!

Lemma 3: 1L, = L. \L (or L. = L., + L), then

(L) =0(L)+ 2"

Lemma 4: 0(L,) = 6(L?), where L? is the dual L-expression
of L.

From Lemmas 1 and 3 it follows that for each set L(v), it
is sufficicnt 1o calculate 8(L,), L.eL(v), for only |L(r)| —
2| L(¢ — 1)} L-expressions of size v. Moreover, from Lemma
4 it follows that 6(L,) must actually be calculated for only

' For illustrative purposes Lemmas 3 and 4 have not been used in com-
pacting Table 1H for L-expressions of size 4 and less.

- |%’ .

293

one-half of these | L(¢)] — 2| L(v = 1)| L-expressions. In other
words, it is sufficient to list in the table entries for only 4| L(v)]
— | L(v = 1)] of the L-expressions of size v. By Lemma 2, this
means we need to explicitly list only 22 percent of all the entries
for L(v).

D. Applications of the Coverage Table

The most straightforward use of the Coverage Table is, as
pointed out before, to determine the greatest lower bound,
8(L,), on the number of fault vectors of Fx covered by any
SFDTS in any N for any set K of lines with which the associ-
ated L-expression is L,.. Thus, for example, note from Table
11 that since 8(L,) = 2¢ = | Fx| for all L,, v < 3, we can state
the following.

Lemma 5: Given any SFDTS, say, T, for any imernal fan-
out-free network, N, 7; covers all the multiple faults of sizes
2 and 3 as well.

This, of course, is a previously known result [10]-[12];
however, the generality of the Coverage Table approach gives
this result a new perspective. To illustrate further, note from
Table 11 that any SFDTS for N will also cover all the multiple
faults of size 4 except for the cases where the L-expression
associated with a set K of 4 lines is either LL + LL or the dual
(L + L)Y(L + L). Moreover, even in these two cases, it can be
seen from the table that at least 14 out of 16 fault vectors of
Fx will necessarily be covered by each SFDTS. A similar ob-
servation about L-expressions of size 5 together with the above
observation leads to the following:

Lemma 6: Given any SFDTS, say, T for any internal fan-
out-free N, T covers at least 14 out of 16 fault veccors on any
set of 4 lines and at least 28 out of 32 fault vectors on any set
of 5linesin V.

Similar observations could, of course, be made regarding
multiple faults of larger sizes.

Another interesting type of use of the Coverage Table is to
perform what we will call coverage averaging. This involves
the use of the Coverage Table to determine the average ca-
pability of an SFDTS 1o cover all the multiple faults in a given
network of some predetermined size. To do this we make the
assumption that each L-expression LeL(v) is equinumerous
in N. We can then calculate

Xo(L)
L .eL(v)
2¢|L{v)]"

This quantity represents the average value of (L) over all
O(L.)'s of fixed size v, divided by 2¢, With an equinumerous
assumption, we can then conclude that in any network /V, on
the average AVG[8(L,)] of all multiple faults of size ¢ will
necessarily be covered by every SFDTS for N. A graph which
shows the values of AVG[6(L,)] for all v < 8 is given in Fig.
2. The following theorem is a direct conclusion from this
figure.

Theorem 1: On the average, an SFDTS in an internal fan-
out-free network covers 92 percent of all multiple faults of sizes
8 or less.

Clearly, the validity of this theorem depends on the validity
of the equinumerous assumption mentioned above; however,

AVG(O(L,)] =

294

AVG [gn)

- -

10 JD"ZW‘S’” 09%
0 087 T~ ~

0.4!1 \

73456718
v

Fig. 2. AVGI#(L,)] forve < 8.

consideration of large general internal fan-out-free N indicates
that the assumption is not unduly restrictive and that for many
networks of interest this theorem is quite applicable. Moreover,
if the equinumerous assumption were not valid for a network,
a weighted coverage averaging could be performed.

Now, this theorem together with some recent results by
Goldstein {16] represent a quantitative affirmation of the
common speculation that, at least in internal fan-out-free
networks, SFDTS’s cover most multiple faults as well. More
specifically, Goldstein [16] has shown by exploiting statistical
information relating to physical defects and chip layout data
that for most networks consideration of multiple faults up to
size 8 is sufficient for multiple fault analysis. Of course, for
networks where the consideration of at most 8 faults is not
sufficient, Theorem | could be accordingly extended.

A very useful result obtained by coverage averaging under
the equinumerous assumption for la: ge netwarks is the fol-
lowing theorem.

Theorem 2: For all ¢ 2 1, AVG[6(L,)] > 0.46]

A proof of this theorem using the asymptotic nature of 8(L,.)
is derived in [17]. The implication of the theorem however is
that on the average at least 46.1 percent of all multiple faults
are covered by each SFDTS in an internal fan-out-free net-
work. This is the first quantitative result which provides an
estimate of the capability of SFDTS’s to cover all multiple
faults in networks which are more general than restricted
fan-out-free networks [13], the largest class of networks for
which it is known that every SFDTS covers all multiple
faults.

V. JUSTIFICATION OF 8(L,)

In this section Properties P1 and P2 of 8(L,) which were
described in the previous section and which justify our asso-
ciated claims regarding (L,) will be considered. P1 will be
proved in Section V-A and a procedure to construct a network
for any L, such that P2 holds will be given in Section V-B. In
the following, our arguments for convenience and with no loss
of generality will be developed under the assumptions that the
set K of lines being considered is such that each Y,eYy appears
in Z{X: Yx] in the uncomplemented form only, and that the
set K =11,2,- - ol

We start with the following two definitions which were in-
troduced in [10].

Definition 3: Given a set K of lines in N and an input vector
X; to NV, a fault vector axeFx will be said to be a (0 — 1)-
tested fault vector for X; f Z{X;; Y] = 0and Z(X;; ax] =
1. Similarly, a fault vector axeFy will be said tobe a () —

IEEE TRANSACTIONS ON COMPUTERS, VOL (29, NO 4, APRIL 1980

0)-tested fault vector for X; if Z|X;; Yx] = Vand Z|X,; ax)
= 0.

Definition 4: Given an input vector X; to N, a fault vector
axeFy will be said 1o be a B-consistent fault vector for X;
relativeZ to A[X; Yi | if A[X,: Yx] = A[X:: ax] = B. Bel0,
1}

Clearly, a S-consistent fault vector is such that the Boolean
value of A[X, Y] for X; is not changed by the presence of ax.
For example, if A[X: ¥x]=x1Y; + x,¥V2for K =1{1, 2}, and
Y1 = x3and Y, = x4, then ap = (0, 1) is O-consistent for X;
= (1001). Similarly, the fault (0, 0}) is also seen to be 0-con-
sistent for X;.

It is shown in {10} that the concepts of Definitions 3 and 4
are of fundamental importance in determining the exact
coverage of fault vectors of Fi by input vectors which are
known to cover fault vectors of F; and F, where f and J form
a partition of K. In this paper, we use the same concepts instead
to obtain the greatest lower bound on the exact coverage. The
main difference between the two approaches is that whereas
in [10] the complete functional information contained in Z[X:
Yx} is used to calculate the exact coverage, we use in this paper
only the information contained in the associated L-expression
to calculate the bound. To illustrate the difference, consider
asetof K of linessuch that Z [X; Yx] = H{X; Y,] + M[X; Y,]
+ O X]. Let «a;¢F; be a (1 — 0)-tested fault vector for some
X;. In other words, Z[X;; Y] = 1 and Z{X;; ;] = 0. Since
Z{X; Y,] is the Boolcan function realized by N, it is the same
as Z[X: Y] = H{X: Y]+ M|X.Y,] + OlX]ifall V,eY, in
M[X; Y,] are replaced by their equivalent primary input
Boolean functions. Thus, it follows that

H[X,—: Y,] + M[X,‘; YJ] + OIX,] =1
and
H{X;; oq] + M{X:i: V)] + O[X;] = 0.

Thatis, H[{X;; ¥} = 1, H{X:: ay) = 0, M[X;. Y,] = 0, and
OIX,] = 0.

Next, let «cs¢F; be a O-consistent fault vector for X; relative
to M[X;: Y,]: thatis, M[X;: Y,] = M[X,;; ay] = 0. ltis then
easily seen that ax = (a; ay) is also a (1 — 0)-
tested fault vector for X;. In other words, we have that if a, is
a (1 — 0)-tested fault vector for X}, «v; is any O-consistent fault
vector for X, and Z{X: Y] = H[X. Y] + M|X;Y,) + O] X),
then ax = (ay, ay)is alsoa (1 — 0)-tested fault vector for X;.
More specifically, if we define

GR(X)) = lak|Z[X;: Yx] = 1 and Z{X;; ax] = 0}
and
F)(X) =la/IM[Xi: Ys) = MIXi: a)) = O},
then for the above example we have that
GR(X)) = GI°(X;) X F(X,). (5.1

By recursively using relations such as (5.1) above, it is

2 A|X; ¥) is used to denote a general Boolean expression in the fan-out-free
form in terms of the variables of X and Y. In particular, 4[X; ¥'x] could be
the same as Z[X: Va).

¥Ry e AN e L a akies et

TRMA Loa

TR RN

AGARWAL AND MASSON TABEE LOOKNUP C OVERAGE BOUNDING

possible [10] to determine the exact coverage of K, by an
SFDTS. This approach, however, is not very practical because
sets such as FI(X,) are highly dependent on the particular X,
J. and M|X; Y,] under consideration.

It turns out though, as will be shown in the following, that
it is possible 10 determine a subset of FI(X;) simply by knowing
the L-expression associated with J. That is, the generic in-
formation of logical interconnection of line variables of ¥ in
M|X; Y,] can be suitably exploited to obtain a subset of
FS(X,). Since such generic information, namely the associated
L.-expression with J. is independent of the particular X}, J, and
M{X; Y,] under consideration, such subsets can clearly be
used in infinitely many different situations.

Furthermore, it is also possible to show that a subset of
G1%(X;) can be obtained simply by knowing the L-expression
associated with /. Using these two results, it then follows from
(5.1) that a subset of G}°(X;) can be obtained by using the
L-expression associated with K. In fact, the Coverage Algo-
rithm of the previous section does exactly this, as we shall prove
in the following two lemmas. It should now be clear, however,
that the greatest lower bound on the exact coverage of Fy is
directly related 1o such subsets of G (X,) and G (X;). X;€T..
We will consider more details of this in Sections V-A and
V-B.

Before presenting the two lemmas, it will be convenient to
introduce some notation here. Because of the generic approach
we are taking, we will represent fault vectors and fault com-
plexes in the following by using the same cubical complex
notation as is used in the Coverage Algorithm. In this notation,
a fault vector, say, ax will be considered as a p-dimensional
0-cube. The fault complex Fx will then simply be the ¢-di-
mensional unit cube (xx - - - x). Moreover, a subset of Fy is
then represented as a set of various cubes in the r-dimensional
unit space. The use of these notations will be clearer as we
proceed.

Lemma7: LetK =1{1,2,---, v} beanysetof v linesin N and
let A[X: Yx] be a fan-out-free form Boolean expression.
Moreover, let L, be the L-expression associated with K relative
10 A[X; Yx]. Then given any X;, A[X;: Yi] = . there exists
at least one cube, say, ceDA(L,) such that the set of O-cubes
of ¢ is contained in or equal to F§(X;), Bel0, 1}.

Before we cnter into a formal proof, the scope of this lemma
should be emphasized again. Recall that in the Coverage Al-
gorithm, the set of cubes DA(L,.) is determined with no refer-
ence to a particular network /V, or a particular set K of lines,
or a particular input vector X;. Indeed, we only considered a
set of ¢ lines in any N whose logical interconnection was gen-
erally represented by L,. Yet, in spite of the generality under
which DA(L,) is generated, we nevertheless are stating in
Lemma 7 that this sct of cubes contains a subset of FZ(X;)
where, by definition, in this latter set we are referring to par-
ticular N, K, and X;—and this result holds regardless of the
particulars. That is, it holds for each of the infinite number of
cases in which L. can be associated with some sct of lines in
an internal fan-out-free network. Hence, Lemma 7 makes a
fundamental connection between the generic and the specific
which is at the very center of all our results.

Proof- Letv = 1. Then K = {1} and A{X: Y«] = 4,[X]Y,

¢

+ A>|X) for some A;|X) and A>|X). Given now that 4]X,:
Yil = AX,)Y + A21X]) = 0 (or 1) for some A, it imme-
diately follows that A4, 1.X;)c;) + A21X;] = 0 (1) for axy = 0 (1).
That is, F3(X,) 2 {Bl. Recalling now from the Coverage Al-
gorithm that DA(L,) = (B) for v = 1, we have that Lemma 7
is true forv = 1.

Assume now that the lemma is true for every set K of |, 2,
---,and © —1 lines, where v 2 2. Based on this assumption. we
will now prove that it is also true for every set K of ¢ lines.
Thus, let K be a set of ¢ lines and L, be the L-expression as-
sociated with K relative to A[X; ¥x]. Let 7 and J form a
partition of K such that A[X: Yx] = (A,[X: ¥;]s 42| X: Y,])
+ O[X]. Then, clearly, L, = L, = L, where L,(L,) is the
L-expression associated with I(J) relative to 4,[X; Y, }(A2| X:
¥,]). We will prove the lemma only for the case where *“+™ is
*“4+" and B = 0. The proof for the remaining cases follows
analogously.

Thus, let X, be such that

AIX,‘; YA] = A;[X,'; Y/] + Az[X,'; Y_I] + OIX,] = 0.
Then clearly,
A|[X,‘2 Y/] = Az[X,-', Y_/] = OIX,] = 0. (52)

Now, let «; be a O-consistent fault vector for X; relative to
A 1X: Y] that s, let apeFO(X;). Similarly, let ayeFY(X;).
Then by Definition 4,

AlXiiap) = 0and AL] X ay) = 0. (5.3)

Using (5.2) and (5.3). it is then casily scen that if ax = (ay.
«vy). then since

AlX;ax] = AXG o) + AR X ay] + O[X] = 0.

Therefore ey must be a O-consistent fault vector for X; relative
to A[X;; ¥Yx]. In other words, we have proven that if a,;eFI(X;)
and a,eFS(X;), then axeF%(X;). Thatis,

F(X;) X F3(Xi) e FR(X)). (5.4)

Consider now the sets D%L,) and DYL,). By our induction
hypothesis we have that there must exist at least one cube, say,
¢1€D%(L,) and another cube, say c2¢D% L) such that the 0-
cubes of ¢; and ¢; are contained in FY(X;) and F9(X;), re-
spectively. 1t then follows from (5.4) that the O-cubes of the
cube (¢)¢2) will belong to FY(X;). However, from Step 3(a)
of the Coverage Algorithm it is seen that (c,c2)eDO(L,).

Q.E.D.

Lemma8: Let K =1{1,2, -, v} beany set of v lines in N and
let L, be the L-expression associated with K. Moreover, let X
be an input vector which (0 — 1)-tests (or (1 — 0)-tests) the
single fault a, = 1 (correspondingly, a; = 0), reK, on the lines
of K. Then there exists at least one cube, say,
ceD}(L,)(ceD%(L,)) such that the set of O-cubes of ¢ is con-
tained in or equal to G¥ (X)(G2(X;)).

Lemma 8, like Lemma 7, makes a fundamental connection
between the gencric, D8(L,.), Be}0, 1}, and the specific. G} (X;)
and G2(X;).

Proof: First of all note that because of our assumption
that each Y,¢Yy appears in Z[X; Y] in the uncomplemented
form, it follows that the s-a-0 fault on any single line r¢K (that
is. the fault a, = 0) will always be (1 — 0)-tested by any X;

=

296

which tests this fault. Similarly, the fauit a, = 1 will always
be (0 ~+ 1)-tested by each X; which tests it. In other words,
G (X)) = (0) and GD} (X;) = (1) for every t¢K.

To prove the lemma now, let K = {1} and v = 1. Then since
Di(L,) = (1) and DYL,) = (0) from the Coverage Algorithm,
and since GY(X;) = (1) and G}°(X;) = (0) as discussed above,
the lemma is clearly true forv = 1.

Assume now that the lemma is true for all setsof 1, 2, - -,
v — 1 lines. Consider thenaset K = {1,2,-- -, v} of v lines. Let
J and J form a partition of K, where I = 11,2, -, pland J =
p+lp+2, ptqlptg=v Letl, =L, L;bethe
L-expression associated with K such that L,(L,) is the L-
expression associated with /(). We will now prove the lemma
for the case wherein

ZIX. Ykl =H{X; Y]+ MX, Y] + O[X]). (5.6)

Xi (1 = 0)-tests a, = 0, and 1¢]. The proof for the remaining
cases follows in a similar manner. Recall here that for the case
mentioned above we have already seen in (5.1) that

GR(X) = G}°(X;) X Fy(X)). (5.7

Moreover, since X; (1 — 0)-tests a,, tel, it follows from our
induction hypothesis that there exists a cube, say, ¢'eD?(L,)
such that all the 0-cubes of ¢! are contained in G)°(X;). Also,
from Lemma 7 we have that there exists a cube, say, c2¢D%(L,)
such that all the O-cubes of ¢2 are contained in F3(X;). Thus
it follows from (5.7) that ali the O-cubes of the cube ¢ = (c'c?)
will be contained in G2(X,). However, from the Coverage
Algorithm we know that ceD?(L,) since DY(L,) = DY(L,) X
DO(L,). QE.D.

A. Proof of Property Pl

Consider an SFDTS, T;. for N and let X be any set of v lines
in N. The exact capability of T to cover fault vectors of Fy
can be quantitatively expressed as

Gx(T,) = U Gk(Xi)
XneT,

where G (X;) is G¥ (X;) or G}2(X;) depending on X;. Clearly,
|Gx(T,)| = ¢(K.T;), as defined in Section 1V. Using Lemmas
7 and 8, we now show in this section that certain subsets of
Gx(X;). XieT,. when combined in the specific manner detailed
in the Coverage Algorithm lead 10 a number, 6(L,), which
satisfies PI.

Theorem 3: Givenaset K ={1,2,-- -, v]of ¢ linesin NV and
the minimum coverage ¢(K) of Fx by every SFDTS for N, the

‘integer B(L,) obtained by the Coverage Algorithm is such
that

0(L.) < ¢(K).

where L, is the L-expression associated with K.
Proof: Let T, be an SFDTS of N such that

¢(K) = ¢(K-TJ) = lGK(T3)| (5.8)

Since there are 2o single faults on the lines of K, there must
exist at least one input vector in 7, corresponding to each of
these 2v faults. To be more specific. let XeT,, 1=1,2,-- -,
v, be an input vector which (0 — 1)-tests the single fault a, =
1;and let X%7,, 1= 1,2, -, ¢ be an input vector which (1

JEEE TRANSACTIONS ON COMPUTERS, VOL €29, NO 4, APRIL 19¢0

— 0)-tests the single fault a, = 0, where, of course, all these
vectors might not be distinct vectors. Recalling that

U Gx(X) = Gx(T3)
XieTs

it is then clear that

MG U GRXP) < Gk(T)). (59)
1ek ek

Consider now Lemma 8. For each teK, let ¢ be a cube in
D}(L,). all the O-cubes of which are contained in G¥ (X™').
Similarly, let ¢)°, 1¢K, be a cube 1n DY(L,), all the O-cubes of
which are contained in G)*(X]°). Then, it follows from this
lemma that

{0-cubesin{c?, ¢, - M ¢ 'OL').“G?('(X?'). (5.10)
1eK

and

[0-cubes infe}®, 2°, -+ el € U GR(XI).
1ekK

(5.11)

Clearly, now, {c{". ¢3', - - -, ¢?'} is an SR, say, PO'(L,) of the
family {D{(L,). DY(L.), - - . DXL). and {c1°, €)%, - -, ;% is
an SR, say, P'%(L,) of the family {D(L,), D3(L.). -
DY(L,)}. Therefore, we have from (5.10) and (5.11) that

HPOULIL = 4 GRX] (5.12)
teK

and

HPIL| < 1 L), 6RO, (513).
1¢ek
In other words, using (5.12) aad (5.13) in (5.9), we get that

HPOUL) + [[ProL,)l} < 1Ok(TL (5.14)

Finally, recalling from the Coverage Algorithm that

(L) = HPRLI] + [PRA(L]]
where ||PRA(LII < [IPOULI] and ||PmaLI) <
[{Pe(L)]| and using (5.8) and (5.14), it is clear that

(L) < ¢(K). Q.E.D.

B. Property P2

Given any L-expression L, we will in the following first
present a procedure which will associate with L, a specific
network, denoted as, N(L,.). A set of lines will next be shown

pm

AGARWAL AND MASSON TABLF LOOK-UP COVERAGE BOUNDING

to exist in N(L,) such that the L-expression associated with
K is L. Finally, an SFDTS, T, for N(L,) will be generated
with the property that (K. T,) = ¢(K) = #(L,). For the sake
of brevity, no proofs are provided in this section; the interested
reader can request {17] for all the pertinent details.

Let L, be an L-expression consisting of v L's. Then a net-
work of class C1, denoted as, N(L,) which has no primary
input fan out and consists of 3v primary input variables will
be associated with L, by the procedure given in the following.
The network N(L,) will be constructed by this procedure in
a recursive manner by using two networks, say, N(L,) and
N(L,). where L, « L, = L,. The 3v primary input variables
of N(L,) will simply be x,. x2, - -, x3,. Similarly, the 3p (3g)
primary input variables of N(L,) (N(Ly)) will be xy, x3, - -,
x3p (correspondingly, x;, x2. - . x34). However, when a net-
work, say, V(L,) is used as a subnetwork, as in the construc-
tion of N(L,). then the 3¢ primary input variables of the
subnetwork V(L) will be some 3q consecutive x;’s, such as,
Xip+1. X3p+2. ", X3p+3g- |

The Procedure can now be formally stated as follows.

Network Construction Procedure:

Step I: If v = 1, then N(L,) is as shown in Fig. 3(a).
Stop.

Step2:1fv22,lete =p+gsuchthat L, = L, = L,. Fur-
thermore, assume that N(L,) and N(L,) are known from
previous use of this procedure.

Step 3: Let the primary input variables of N(L,) be x;, x,
T Xap, and that OfN(Lq) be X3p+1, X3p+2 " X3p+3g-

Step4:If L, = L, + Lo(LpL,). then form N(L,) by ORing
(ANDing) N(Lpy) and N(L,) as shown in Fig. 3(b) [see Fig.
3(c)]. Stop.

In the following we will assume that an input line which is
connected to the primary input variable x;, 1 < j < 3p, is
labeled with integer j. Note now that each N(LZ,) consists of
exactly v subnetworks of the type shown in Fig. 3(a). More-
over, these v subnetworks are logically interconnected in N(L,)
in the same manner as the ¢ “L" symbols in L,.. Thus, it implies
that if X is a set of ¢ lines in V(L) such that there is exactly
one line in K from each of these ¢ subnetworks, the L-expres-
sion associated with the set K would be L,. We will thus be
concerned in the following with the specificset K = {2, 5, - -,
3v—1jofelinesin N(L,.).

We now present a test set generation procedure which will
generate a SFDTS, Ty, for N(L,.) such that ¢(K.T,) = 6(L,.).
T, will consist of 4 input vectors, namely, T, = {X¥', X9, x1°,
XXXV XX X X, X XL XS,
X3 _p X0, X139 where each X%'(X!%) is an input vector
which (0 — 1)-tests ((1 — 0)-tests) the single line i-s-a-1 (line
i-s-a-0) in N(L,). It will be assumed that the sets Pl..(L,) and
P%..(L,) from which 8(L,) was calculated are given.

Test Set Generation Procedure:

DoSteps 1,2,and 3for¢t = 1,2, -, 0.

Step 1: Let ¢'eP%,(L,). Bel0, 11, be the cube which repre-
sents the set DZ(L,) in P2,,(L.). Moreover, assume that ¢! =
(cheh---c)).

Step 2: For a given 8, do the following fori = 1,2, - . The

LI
p— Ny
130.___.4
¢
e+l
‘3,.;:1 NiLg
'
b
L
T way
lh——_‘
"1
Yoz T M
"33
[{d}
Fig. 3. Networks for the network construction procedure.
: . X2 ifB= 10 rA_
resulting output will be X3}, if 8= 1,and X}_,if B =0.
a) Ifci=PB.15i thenlet x3,-32 =1, x3,—, = f and x3;
=0
b) Ifc)= ﬂ, t=1i thenletx3i—2=1,x3-1 = Band X3
= 0; _
¢) If ¢! = x, then let x3;-2 = x3;—; = x3; = B.

Step 3: For a given 8, do the following fori = 1,2,---,v. The

resulting output will be X3°_,if 8=1,and X{2if 8 =0.
a) Same as Step 2a);

_b) Ifei= B, 1=i thenlet x3,-2 =0, x3,y = 8, and x;

=g
c) Same as Step 2c).
Stop.

The test set, T, obtained by the above procedure is an
SFDTS for N(L,). and is such that ¢(K,T,) = 0(L,) [17). The
following example illustrates the above developments.

Example: Let L, = (L + L)(L + L). The network N(L,.)
obtained by using the Network Construction Procedure is
shown in Fig. 4. Let K = {2, 5. 8, 11} be the set of 4 lines of in-
terest. Recall from the Example given in Section 1V that for
L.=(L+ L)L+ L). wefound that §(L,) = 14, and

Prinlle) = (Ixlx, x1x1)
and
P2 (L.) = (00xx, xx00).

Completely gencrating T, with the Test Set Generation Pro-
cedure will result in the specification of 40 = 16 input vectors.
We will, however, illustrate the use of the Test Set Generation
Procedure only for the generation of one input vector. The
complete T can be generated similarly and is listed in {17}.
Thus, consider the single fault, say, ag = 0 (that is, the fault
line 8-s-a-0). Then to determine X3° we use Step 2 of the pro-
cedure for ¢ = 3 and B = 0. Doing this, we note that the cube
¢!, ¢ = 3, which represent DY(L,) in P%i(L,) is (xx00) =
(c3e3cicd). Therefore, since ¢! = x, fori = 1, we have from Step
2c) that

L ———

Fig. 4. Network for the example in Section V-B.

xy=1l,x;=1,and x3=1.
Similarly, since ¢{ = x for i = 2, we have
xs=1,x5= l,.andx¢,= 1.
Fori = 3,c¢! = 0and i = t, thus, by Step 2(b) we have
x7=1,xg=1and xg =0.
Finally, for i = 4, we get from Step 2(a) that
xj0=1.x;;=0,and x); =0.
That is,
X¥=(,1,1,1,1,1,1,1.0,1,0,0).

The procedure can similarly be applied to generate the re-
maining 15 input vectors.

It is important to point out here that although the nctworks
constructed in this subsection are fan-out-free networks, it is
also possible to construct networks which have primary input
fan out and for which §(L,) = ¢(K). However, because the
Network Construction Procedure and the Test Set Generation
Procedure for such networks are much more complex, we have
for simplicity considered fan-out-free networks 1o justify
Property P2.

In conclusion, it has been shown in this section that given
any set of K of ¢ lines in any internal fan-out-free network N,
the greatest lower bound on the minimum coverage ¢(K) is
simply the integer 8(L,), where L, is the L-expression asso-
ciated with K and #(L,) is obtained by using the Coverage
Algorithm.

Vi. CONCLUSION

This paper develops a new theoretical approach to deter-
mining, quantitative bounds on the multiple fault coverage
capability of single lault detection test sets in combinational
internal fan-out-free networks. The importance of such bounds
is underscored by the development of VLSI technology where
it is becoming increasingly evident that explicit multiple fault
coverage considerations are prohibitive. The main feature of
our approach is the gencric representation of faults in terms
of L-cxpressions. Using this representation, it is possible to
determine the greatest lower bound on the number of multiple

IEFE TRANSACTIONS ON COMPUTERS, VOL €29, NO 4, APRII

1980

faults covered by any SFDTS on any set of lines in any imernal
fan-out-free network by means of a reflerence into a precal-
culated Coverage Table. The generality of our results can be
seen by noting that various previously known results of this
type simply correspond to specific entries in the Coverage
Table. Moreover, an averaging over all the entrics of the
Coverage Table yields general, quantitative observations, such
as those stated in Theorems 1 and 2.

Aithough the discussions in this paper were limited to irre-
dundant networks, the concept of L-expressions is equally
applicable to redundant networks. Some preliminary work
along these lines has been reporied elsewhere [30). Further-
more, there are various other interesting problems to which
the application of the L-cxpression concept would be appro-
priate:

1) Since it can clearly be observed from the Coverage Table
that there are certain inherently “bad” L-expressions in the
sense that such L-expressions indicate network structures
which can have multiple faults that are poorly covered by
SFDTS?s, it would be useful to develop design principles which
minimize the occurrence of such L-expressions in combina-
tional networks.

2) The averaging scheme used in this paper is based on a
heuristic assumption of the “‘equinumerous occurrence™ of
L-expression. It is clear, however, that more network-specific
averaging schemes would lead to tighter bounds.

3) The extension of these results to general reconvergent
fanout network of Class C3 would be significant. A possible
approach to such an extension might be developed by intro-
ducing the concept of a labeled L-expression, in which all L’s
with the same label would correspond to a stem linc and its
fan-out branches. Similar to the approach taken in this paper,
this labeled L-expression approach also would have the ad-
vantage of utilizing the well developed theory of Jabeled two-
terminal series-parallel networks [20] to enumerate and specify
various sets of labeled L-expressions;

4) The generic representation concepl would be particularly
interesting to explore under the constraints of multiple fault
testing problems in highly structured devices such as PLA’s
and ROM’s [29].

REFERENCES

1] J. P. Hayes, “"I'he fanout structure of switching functions,” J. Ass.
Comput. Mach.. vol. 22, pp. 551-571, October 1975.

[2] -——., “Enumeration of fanout-free Boolean functions,” J. Ass. Comput.
Mach.. vol. 23, pp. 700-709, Oct. 1976. .

[3} V. K. Agarwal, “Fanout-free Boolean functions and L-expressions,”
submitted to J. Ass. Comput. Mach., for review. (Also. appeared in the
Proceedings of the 1978 Conference on Information Sciences and
Systems, The Johns Hopkins University, Baltimore, MD, 1978, pp.
227-233).

[4] G. Markowsky, "*A straightforward technique for producing minimal
multiple fault test sets for fanout-free circuits,” IBM Res. Rep. RC 6222,
9/29/76. Yorktown Hceights. NY.

{5} G. Markowsky and C. W.Cha, “No single faull test set is smaller than
any minimal multiple fault test sct for a fanout-free combinational
circuit,” IBM Rep. RC6483. 4/13/77. Yorkiown Heights, NY'.

[6] S. C. Seth and K. L. Kodandapani, “*Diagnosis of faults in lincar tree
neiworks,” IEEE Trans. Comput., vol. C-26, pp. 29-33, Jan. 1977.

[7] C. D. Latino and J. G. Bredeson, “Simplificd multiple stuck-at-fauh
test generation techniques,” in Proc. [3th Annu. Allerion Conf. 1975,
pp. 682-691.

AGARWAL AND MASSON TABLE LOOK-UP COVERAGE BOUNDING

(8] J. P. Hayes. “A NAND model for fault diagnosis in combinational logic
networks,” JEEE Trans. Comput., vol. C-20, pp. 1496-1506, Dec.
197).

[9) V.K. Agarwal and G. M. Masson, "A functional form approach 10 tes
set coverage in tree networks,” [EEE Trans. Comput., vol. C-28, pp.
50-52. Jan. 1979.

{10] V. K. Agarwal and G. M. Masson, *'Recursive coverage projection of
test sets,” JEEE Trans. Comput., vol. C-28, Nov. 1979.

{11} J. W.Gault, J. P. Robinson, and S. M. Reddy. **Multiple fault detection
in combinational nctworks,” JEEE Trans. Comput., vol. C-21, pp.
31-36, Jan. 1972,

[12] R. J. Diephius, “Fault analysis for combinational logic networks,” Ph.D.
dissertion, Dept. of Elec. Eng., Mass. Inst. Tech., Cambridge, MA, Sept.
1969.

113) D.R.Schertzand G. Metze, “On the design of multiple fault diagnosable
networks,” JEEE Trans. Comput., vol. C-20, pp. 1361-1364, Nov.
197).

{14} D. B. Armstrong, “On finding a nearly minima) set of fault detection
tests for combinational logic sets,” JEEE Trans. Comput., vol. C-15,
pp. 66-73, Feb. 1966. '

115} C.T. Kuand G. M. Masson, “The Boolean difference and multiple fault
analysis,” IEEE Trans. Comput., vol. C-24, pp. 62-71, Jan. 1975.

[16) L. H. Goldstein, ‘A probablistic analysis of multiple faults in LS1 cir-
cuits,” 1EEE Computer Soc. Rep. R-77-304. IEEE Computer Society,
Long Beach, CA.

{17} V. K. Agarwal, “Generic ¢haracterizations of multiple faults for
table-look-up coverage bounding in tree networks,” Ph.D. dissertion,
Dept. Elec. Eng., Johns Hopkins Univ., Baltimore, MD, Sept. 1977.

[18] P. A. MacMohan, “The combination of resistances,” Electrician, Apr.
8, 1892,

{19] J. Riordan and C. E. Shannon, *The number of two-terminal series-
parallel networks,” J. Math. Phys., vol. X X1, pp. 83-93, 1942.

{20} J. Riordan, An introduction to Combinational Analysis. New York:
Wiley, 1958.

{21} D.L.Dictmeyer, Logic Design of Digital Systems. Boston, MA: Aliyn
and Bacon, 1971.

{22} M. A. Breuer, “Logic synthesis,” in Design Automation of Digital
Systems, Vol. I, M. A. Brever, Ed. Englewood Cliffs, NJ: Prentice-
Hall, 1972.

{23} E. B. Eichelberger and T. W. Williams, A Logic Design Structure for
LS| Testability,” in Proc. 141h Design Automation Conf.. New Orleans,
LA, IEEE Catalog Number 77 CHI1216-1C, pp. 462-468. June
1977.

[24] E. J. McCluskey and F. W. Clegg. *“Fault equivalence in combinationa)

logic networks,” IEEE Trans. Comput., vol. C-20, pp. 1286-1293, Nov.

1971.

D. R. Schertz and G. Metze, " A new representation for faults in com-

binational digital circuits,” JEEE Trans. Comput., vol. C-21, pp.

858-866, Aug. 1972.

{26] C. W. Cha, *Multiple fault diagnosis in combinational networks,” Ph.D.
dissertation, R-650, Coordinated Science Lab., Univ. Nlinois, June
1974.

{27} D.C. Bossen and S.). Hong, **Cause effect analysis for multiple fault
detection in combinational networks,” JEEE Trans. Comput., vol. C-20,
pp. 1252-1257, Nov. 1971,

{25]

299

[28] |. Berger and Z. Kohavi, **Fault detection in fanout-free combinational
networks,” [EEE Trans. Comput.. vol. C-22, pp. 908-914, Oct.
1973.

[29]) V. K. Agarwal, “Muliiple fault detection in programmable Jogic arrays.”
in Proc. 1979 Imt. Symp. Fauli-Tolerant Computing, Madison, W),
pp- 227-234, June 1979.

{30} V. K. Agarwal and G. M. Masson, “Redundancy results in combina-
tional networks by means of L-expressions,” in Proc. Fifteenth Annual
Allerton Conf. Communication Control and Computing, Urbana-
Champaign, IL, pp. 732-742, Sept. 1977.

Vinod K. Agarwal (S'75-M"77-SM'79) was born
in Mathura, India, on April 30, 1952. He reccived
the B.E. (Hons.) degrec in electronics engineering
from the Birla Institute of Technology and
Science, Pilani, India, in 1973, the M.S. degree in
clectrical engineering from the University of Pitis-
burgh, Pittsburgh, PA, in 1974, and the Ph.D. de-
gree in electrical engineering from The Johns
Hopkins University, Baitimore, MD, in 1977.

From 1977 to 1978, he was an Assistant Profes-
sor in the Department of Electrical and Computer
Engincering, Wayne State University, Detroit, M. Presently he is an Assistant
Professor in the Depariment of Electrical Engineering, McGill University,
Montreal, P.Q., Canada. His 1eaching and rescarch interests are in switching
theory, computer structure and organizalion, operating systems, and fault-
tolerant computing.

Gerald M. Masson (S°67-M'71-SM’'78) was born
in Chicago, L on May 5, 1943. He received the
B.S.E.E. degree in 1966 from the Hllinois Institute
of Technology, Chicago, and the M.S. and Ph.D.
degrees in electrical engineering from Northwest-
ern University, Evanston, L, in 1968 and 1971,
respectively.

In 1971 he joined the Department of Electrical
Engineering, University of Pittsburgh, Pittsburgh,
PA. In 1975 he joined the Department of Electri-
cal Engineering, The Johns Hopkins University,
Baltimore, MD, where he is currently an Associate Professor. His research
interests include fault tolerant computing, interconnection networks. and
computer sysiem design,

TN s e e T T TR e

32

This overview presents several different types of circuit switching
networks: concentrators, connectors, expanders, partitioners,
SIMD interconnectors, and sorters.

i\ o TovANG

Geraid M. Masson

George C. Gingher

A Sampler of Circuit Switching Networks

Shinji Nakamura

The Johns Hopkins University Bethlehem Steel Corporation The Johns Hopkins University

Circuit switching networks are systems which
provide a set of interconnecting circuits from a set of
inputs to a set of outputs by opening and closing
switches, or crosspoints. As a discipline, circuit
switching networks deal fundamentally with the
design and analysis of crosspoint patterns. At first
thought, the idea of designing a system for simply in-
terconnecting terminals might seem too basic to con-
stitute a research area. However, the vast majority of
the area of circuit switching networks lies far beneath
the surface.

This paper presents some of the important results
of recent research into circuit switching networks
and their complexity. Several different types of cir-
cuit switching networks will be discussed, together
with the theoretical complexity and the best known
explicit constructions needed to implement them. As
with any sampler, the network designs we display
will hardly exhaust the available possibilities. Nor do
we mean to imply that those omitted are held in lower
regard than those we discuss. Our intent is only to
show that the area of circuit switching networks is
embroidered with many fascinating designs which
are now, more than ever before, applicable to com-
puter system architectures.

Much of the early research on circuit switching net-
works was motivated by the needs of the communica-
tions industry. Indeed, a great deal of the work in this
area still is pursued because of that application.
However, with the advent of LSI/VLSI technologies,
a circuit switching network now often represents a
principal subsystem in a large class of memory/
processor/peripheral computer complexes. In fact, in
many such systems the associated circuit switching
network significantly, and even dominantly, affects
the overall cost and performance of the system.

As generic examples of their uses in these applica-
tions, three schematics of computer systems contain-
ing circuit switching networks are shown in Figure 1.
In Figure 1(a), the circuit switching network is re-
quired to provide paths between a large set of input
devices to some smaller set of output ports. These
output ports then provide access for those input
devices to some other devices or functions. It isusual-
ly not cost-efficient or necessary for general opera-
tion to have one such device or function for each input
device. Hence, subsets of the input devices are
selected by the circuit switching network and, in ef-
fect, concentrated to the output side of the network
as required by system operation. In some cases, the
output functions can all be identical so that the order
in which the input devices are interconnected to the
output ports becomes unimportant. Such an inter-
connection requirement, for example, can be found in
the area of image processing where the input devices
are memory cells and the output functions are cor-
relations, or where the input devices are smart sen-
sors and the output functions are signal processors.

In Figure 1(b), the circuit switching network is re-
quired to provide paths between specified devices at
the input side to specified devices or sets of devicesat
the output side. Some or ali of the devices at the input
and output sides might actually be identical, but the
general operation caninvolve them in such a way that
they must be treated as though thev were dis-
tinguishable. Hence, the input devices are connected
in a one-to-one manner or expanded in a one-to-many
manner by the network to the output devices as re-
quired by system operation. Such an interconnection
requirement can be found in numerous parallel pro-
cessing environments. For example, if the input
devices are processors and the output devices are

0018-9162/79/0600-0032800.76 € 1979 IEEE COMPUTER

. NPUT DEVICES
> o ¢ -
o S CONTROL CIRCUIT SWITCHING e
i| ’ o UNIT NETWORK .
| ; 0
) .. "
] . : B ! L.
i -) o
‘ . . - P<N
i R -
i a @ OUTPUT FUNCTIONS
. INPUT DEVICES INPUT DEVICES
; . D‘ —— DN 0‘ -— — - ON
- T A I T T
. CONTROL || CIRCUIT ‘ R CIRCUIT] CONTROL
i : UNIT SWITCHING A . SWITCHING : UNIT
'; NETWORK NETWORK
0| — — {0, L l
OUTPUT PORTS

o) OUTPUT DEVICES ©

Figure 1. Generic examples of computer systems containing circuit switching networks: (a) concentration, (b} connec-
tion/expansion, and (c) partitioning. -

memory units, then we have what is often referred to puts. As we will see, many well-known circuit switch-
as a data alignment/data access interconnection re- ing network constructions consist of interconnected
quirement. complete crossbar networks. 14

Finally, in Figure 1l(c), the circuit switching net- However, not all crossbar switches of interest are
work must partition the set of input devices into dis- complete. A sparse crossbar switch has some inputs
joint subsets so that the subsets can function asin- and outputs with no crosspoint between them and,
dependent subsystems. Here, many different parti- consequently, between which no direct interconnec-
tioning requirements are possible depending on
whether or not the devices are distinguishable and

whe.ther ornot the s'pe.clﬁc output portsto whichthey - OUTPUTS OUTPUTS

are interconnected is important. e e, S g,
. ({

Terminology

A circuit switching network can be described as a
set of contact switches, generically called cross-
points, joined together by links in order to intercon- INPUTS < INPUTS <
nect network input terminals (inputs) to network out-
put terminals (outputs). Circuit switching networks :
of interest must be capable of doing this for a very

large number of interconnection requirements. An —
example of such a network is explicitly shown in \ \

Figure 2(a) for N-inputs and M-outputs. This network ' . X =CROSSPOINT
isknown as an (N XM}-complete crossbar network, or, -) ® {SWITCH)

more simply, as an (NXMj-network. Clearly, the - : S
number of crosspoints is NM, since thereisonecross- Figure 2. (a) complete (N x M)-crossbar switch; (b) G)-blnomlal net-
point between each of the inputs and each of the out- waork.

June 1879

=

tion is possible. An example of this type of construc-
tion is the binomial network® shown in Figure 2(b).

Besides the illustrations of Figures 2(a) and 2(b),
which explicitly show inputs, outputs, and cross-
points, another means of describing crossbar net-
works is to model them as bipartite graphs. In addi-
tion, the adjacency matrix of a bipartite graph can be
used to represent crossbar networks where the ones
represent crosspoint placements. This is illustrated
in Figure 3. In Figure 3(a), a (4 X3)}-network is shown
explicitly; Figure 3(b) is a node-edge representation of
the network, with the 12 edges representing the 12
crosspoints; and in Figure 3(c) we have the corre-
sponding graph adjacency matrix. If it is necessary
to indicate the direction of signal flow in the graph,
the edges of the graph representing the network can
be directed from inputs to outputs. Henceforth, we
will illustrate our circuit switching networks with
whichever representation is most convenient to the
immediate discussion. :

Circuit switching networks are usually classified
accordingto the types of interconnections which they
must provide. In the following sections we will
discuss some aspects of the circuit switching net-
works known as concentrators, connectors, ex-
panders, partitioners, SIMD interconnectors, and
sorters. Definitions of the input to output intercon-
nection requirements which each of these networks
satisfy are treated in their respective sections. For
each such type of circuit switching network,
however, two important aspects relating to their in-
terconnecting capabilities should be pointed out
here. Note that the circuit switching network of
Figure 3 can interconnect all possible combinations
of inputs to outputs; and it can provide any new addi-
tional interconnection between an unused (or “idle”’)
input to a not necessarily idle output regardless of the
other interconnections which are currently in pro-
gress. A network with this property is said to be non-
blocking. In other words, a nonblocking network can
satisfy any new, valid interconnection request in the
sense of providing a path for that request without
disturbing any of the other existing interconnections
in the network. Thisidea can be made somewhat more
formal by noting that a specification of the input-to-
output interconnection requirements at any timein a
network is often referred to as an interconnection
assignment, and it is sometimes described as a map-

.- —~— - . - -~

, OUTPUTS
;

: 123
e)t

[24°

A = C

% \o

L

e . e - . e e e o N vy e

Figure 3. Representations of 8 complete crossbar switch: (a) crossbar, (b) bipartite graph, G, (c) adjacency matrix of G.

ping of the inputs onto the outputs. A total assign-
ment includes all the inputs/outputs. A detailing of
the opened and closed crosspoints at any time in a
network is referred to as the state of the network.
Then, a nonblocking network in any state satisfying
some valid interconnection assignment can satisfy
any new, valid interconnection assignment contain-
ing the previous assignment by being placed in a new
state containing the old state. It does this by closirng
crosspoints to provide the additional interconnecting
paths without any disturbance to existing paths.

As opposed to the above, suppose that the network
interconnection requirement is to provide disjoint in-
terconnections from any specified set of inputs to
some specified set of the outputs. Suppose further
that, for some assignment where interconnections
are in progress, an additional request can sometimes
only be realized by rearranging some of the existing
interconnecting paths. A network which provides in-
terconnections in this manner is said to be a rear
rangeable network. Hence, placing a rearrangeable
network in a new state to satisfy an interconnection
assignment containing the presently satisfied inter-
connection requirement sometimes requires the
disturbance of existing paths. In such networks, the
upper bound on the maximum number of rear-
rangements necessary to provide for any additional
interconnection is usually significant.

Two of the main circuit switching network design
techniques are decomposition and steging. The
former consists of decomposing the initial intercon-
nection requirement into a set of subrequirements,
each of which is similar in nature to the initial require-
ment but usually smaller in size and, therefore, less
complex to realize. This decomposition is usually con-
tinued on the subrequirements to produce even finer
subrequirements. This is then recursively continued
until it is feasible to satisfy the finest subrequirement
with a brute-force or obvious design. Proceeding
backwards relative to the decomposition technique
towards the initial interconnection requirement ef-
fectively specifies a structure which satisfies the
original requirement. The overall structure is then
referred to as a multi-stage structure. Each stage will
often consist of a set of subnetworks linked to the
subnetworks of other stages. For example, an output
terminal of a subnetwork of one stage might belinked
toan input terminal of a subnetwork of another stage.

S N -
OUTPUTS

©

P . e i N e ~
P T T S T N A T T T NV YOS N

COMPUTER

R T T SR

In the following, in illustrations of multi-stage net-
works showing explicit crosspoint designs, the links
will be shown as solid lines connecting the terminals
{input and output) of one stage with the terminals of
other stages. Such links can simply be viewed as
hardwired interconnectors. In the graph models of in-
terconnection networks, the links will either be
shown as dotted lines (so as not to confuse them with
edges which correspond to crosspoints), or, when ap-
propriate, the output nodes of one stage will be
superimposed on the input nodes of the stage to
which they would be linked in an explicit construc-
tion. When discussing graph models, we will often
refer to the input/output nodes of a model as simply
the inputs/outputs of the network, and the input/out-
put nodes of a stage as simply the inputs/outputs of
the stage.

Implicit in the concept of a multi-stage design of a
circuit switching network is a tradeoff which is at the
center of much of the research in the area. Namely, we
will be motivated to consider multi-stage designs for
various types of interconhection requirements
because such designs will often be shown to employ
far fewer crosspoints than straightforward, one-
stage alternatives. However, the overall reduction in
crosspoints will be paid for by the added complexity
of realizing assignments in the network in the sense
of computing states to satisfy requests, and in the
delays of the network in the sense that a signal flow-
ing from the network input to the network output will
be required to pass through more than one cross-
point. This size versus control conflict will be seen
repeatedly in the following sections.

Accordingly, the role of complexity theory in pro-
viding bounds on the maximum and minimum
number of crosspoints required in order to realize a
given interconnection requirement is significant in
the area of circuit switching networks. Lower bounds
provide a theoretical minimum, below which it is
futile to attempt to construct practical networks; and
upper bounds provide a convenient benchmark with
which to measure proposed designs. In the following,
for each type of circuit switching network, we will
give the known theoretical and constructional
bounds. For those bounds, all logarithms will be to
the base 2 unless otherwise specified. It is interesting
to point out here that along these lines we will see
cases in the following sections where a decomposition
of a class of assignments can be described, and the ex-
istence of a subnetwork which satisfies the assign-
ments with a given bound on its number of cross-
points can be proven, but where no explicit practical
construction technique for designing these networks
is known.

Concentrators

A concentration circuit switching network or, more
simply, a concentrator interconnects specific idle in-
puts to arbitrary idle outputs by providing disjoint
circuits from the inputs to the outputs®? Clearly, only
concentrators where N, the number of inputs, is

June 1979

. e LI A ——————r-- © - TS g
.

- w——— g e s - . e

greater than M, the number of outputs, are of in-
terest. We will let the capacity of a concentrator be
denoted by R, where R is the maximum number of in-
terconnections that can be made simultaneously
through the network. In other words, an Ninput to M
output concentrator of capacity R is a circuit switch-
ing network capable of interconnecting any of the (%)
choices of inputs, K € R, to some K of the outputs.
The important point is that the inputs can be a priori
specified but the outputs to which they will be con-
nected cannot be so specified. Hence, a concentrator
can be functionaliy described by a triplet of integers
(N,M,R),N>M >R, where

N = number of inputs,
M = number of outputs,
R = capacity.

Figure 3 is a (4 X3)-network which is functionally a
{4,3,3)-nonblocking concentrator. Indeed, it is clear
that an (N XM)-network is an (N, M, M,)-nonblocking
concentrator. However, concentrators with fewer
than NM crosspoints are known. The second stage of
Figure 5 is a {6,4.4)-rearrangeable concentrator in
which the pattern of crosspoints connecting the out-
puts to the inputs consists of all the possible (;)
choices of two crosspoints between the inputs and the
four outputs. This configuration, called a binomial
concentrator, can be shown to have a capacity of 4.5

Concentrators were first defined by Pinsker,® who
proved that there exist (N, M, M)-rearrangeable con-
centrators for all N > M with at most 29N cross-
points. One particularly interesting aspect of Pin-
sker's network, as shown in Figure 4, is his recursive
use of a network structure in order to obtain this
bound. As discussed earlier, it is common to exploit a
structural concept recursively, starting with the
complete problem and using some insightful observa-
tion to form subproblems which can be further
decomposed. The key, of course, is to determine the
structural concept which provides somereduction in,
for this case, the number of crosspoints (or edges in
the graph model) relative to a benchmark and,
perhaps, even agrees asymptotically with the infor-
mation theoretical optimum.

Thus, an upper bound on the necessary asymptotic
growth of the number of crosspoints in an
(N,M, M)-rearrangeable concentrator as the number
of inputs, N, grows is on the order of N crosspoints,
that is, O(N) crosspoints. Relative to the information
theoretical bound, this is the best order of growth
possible. However, it must be pointed out here that
Pinsker’s results are non-constructive in that they
are not generally based on explicit constructions.
Rather, they are based on a proof of only the existence
of an (N, M, R)rearrangeable concentrator for all R <
M. It is significant that there does not exist a method
at present (other than an exhaustive consideration of
all possibilities) which leads to their explicit construc-
tion for all N. .

There have, however, been some other recent con-
tributions regarding constructions. Margulis,® on the
basis of a complex argument involving the theory of
group representations, has given a construction

oy o m——— -

35

M-OUTPUTS
e ——

L i
v :
i S e ! o
! (. ROSSPOINTS
G ¥ 2 { . an %) S
r Y2 (N-m) r—— " .
: INPUTS - ¢ . Y o,
‘ S MEN
' \ - (¥~ M) LINKS
! ‘ G=(2 (N-M). (N—M), (N-M)) CONCENTRATOR

: H=(M, (N-M), (N~M)) CONCENTRATOR -
b o e s i A e s ki s - et s+ o e S iR e 27

Figure 4. Pinsker’s concentration network.

technique which results in a concentrator of predeter-
mined capacity with K stages, wherein each stage re-
quires at most 5N crosspoints. However, we are not
aware of any results that firmly establish a bound for
K. This unfortunately jeopardizes the applicability of
Margulis’ results.

A known constructive result is Masson's binomial

concentrator® (see Figure 5), which shows that the

$)-network is a (15,6,4)-rearrangeable concentrator
and that the (;}network is a (6,4,4)-rearrangeable
concentrator. Hence the cascade of Figure 5 is a
(15,4,4)-rearrangeable concentrator with only 42
crosspoints. This can be favorably compared with a
benchmark of a complete bipartite graph with 15 in-
puts and four outputs representing a concentrator
which has 60 crosspoints. A practical aspect of the
use of the binomial construction is that an upper
bound of one plus the number of stages can be shown
to exist for the number of existing paths which must
be rearranged to satisfy a new request in its opera-
tion.

In general, the graph model of an ()}f)-binomial
circuit switching network or, more simply, an
(f)metwork. has (f)inputa. X-outputs, Y-edges/
input, Y(’{)IX edges/output, and a capacity of Y+2.

15 INPUTS 4 OUTPUTS
o TT 0000000 o
~
o- O
F* ot o
: K-
CrrfgTT® §
: euuxs/

Figure 5. Masson's binomial concentrator.

36

Thus it can functionally be described as an
4(§),x, Y +2)-rearrangeable concentrator.

Another construction of a concentrator is an in-
teresting generalization of the basic binomial net-
work. Recall that the adjacency matrix of the graph
representing a network is composed of zeros and
ones, where each of the non-zero entries denote the
position of edges between the vertices of the graph
corresponding to the inputs and outputs of the net-
work. Suppose now that instead of each vertex of this
graph representing only a single input or output ter-
minal, it represented a set of input or output ter-
minals, and in the same sense, suppose that each edge
in this graph model represented a binomial network
providing interconnecting paths between those input
terminals and output terminals. The capacity of the
resulting composite network would clearly be a func-
tion of the base network and the particular replace-
ment networks used for the replacement of each non-
zero in the graph adjacency matrix. For example, if
the graphofa é')-network is used not only as the base
graph, but also as the replacement, the result is a
(36,16,11)-rearrangeable concentrator with only 144
edges.? Note that a 36-input, 16-output network with
11 crosspoints between each input and the outputs
would require 396 crosspoints.

Such a network corresponds to a super binomial
network. More explicitly, it can be described as a
(;) -network. In general, any (Yf)2 graph, where Y 2
2, has capacity of R = (Y +1) (Y +2)~1, and thus it
represents a (('3%) %, (Y+2)2, (Y+1) (Y+2)—1)-rear-
rangeable concentrator.® Such concentrators are at-
tractive because they are sparse, and they are mode}-
ed as a single, incomplete bipartite graph. The more
general class of (f)" networks can be designed in an
analogous manner.

Regarding nonblocking concentrators, Pippenger’
has derived the (somewhat surprising) result that the
number of crosspoints of such networks is O{NlogN).
As we will see, thisis asymptotically the same as that
required for nonblocking connectors, although the
former intuitively seems as though it should be much

COMPUTER

N
INPUTS

—

O -0

G — s G’

oq|

S’ IS A
P

Elily
A 6] §

Figure 6. Pippenger’s N-superconcentrator.

less difficult to implement than the latter. Little is
known about minimal explicit constructions for
nonblocking concentrators.

N-superconcentrators!®!! are a type of rear-
rangeable circuit switching network with more
powerful interconnecting capabilities than a concen-
trator. In the graph model of an N-superconcentrator
with N inputs and N outputs for every set of R € Nin-
puts and every set of R< N outputs, there exists a set
of R vertex disjoint paths from the set of inputs to the
set of outputs. Thus, in N-superconcentrators the
sets of input and output terminals to be intercon-
nected can both be specified, but the individual input-
to-output interconnections within the sets cannot be
specified. Clearly, superconcentrators are signifi-
cantly more powerful than regular concentrators, yet
Pippenger!! has proven the existence of N-super-
concentrators with at most 40N crosspoints. Again,
however, no explicit construction which generally
satisfies the bound is known. Pippenger's proof is
based on the existence of (6m,4m,3m)-rearrangeable
concentrators with only 36m crosspoints. These con-
centrators are used in the recursive construction il-
lustrated in Figure 6.

It is worth pointing out here that Pippenger
establishes his results on superconcentrators with a
probabilistic approach. The principal idea behind
such an approach is to show that the probability that
a network exists is greater than zero, or conversely,
the probability that it does not exist is less than one.
Proving either conjecture implies that the network
exists, although it does not explicitly lead to a con-
struction. Besides Pippengers’s paper,!! a more

June 1979

v ——— - e - err——————— O m N g e

: e il UPER-CONCENTRATOR .
, 7" .G ANDG’ ARE BIPARTITE CONCENTRATORS

thorough treatise of this type of probabilistic ap-
proach is provided by Erdos and Spencer.!?

Another type of concentrator which is less power-
ful than an N-superconcentrator is an N-hyper-
concentrator, which is a rearrangeable circuit switch-
ing network with N inputs and N outputs in which
any specified set of k< Ninputs can be interconnected
in some arbitrary order to the first k outputs. Clearly,
an N-hyperconcentrator has less interconnecting
capability than that of an N-superconcentrator.
Thompson!? has shown that a network called an
(N, N)-infrageneralizer which is due to Ofman'* can be
reversed (in the sense that inputs of the (N, N)-infra-
generalizer are considered as the outputs of the
N-hyperconcentrator and the outputs of the
(N,N)infrageneralizer are considered as the inputs of
the N-hyperconcentrator) to produce an N-hyper-
concentrator. An 8-hyperconcentrator is illustrated
in Figure 7. It is easily shown that such N-hyper-
concentrators have 2NlogN crosspoints.'® This par-
ticular construction of an N-hyperconcentrator has
the enhanced capability of interconnecting the
selected k< NVinputs to any k<N consecutive outputs
(allowing for wraparound) while maintaining the
order of the inputs.

Connectors

In a connection circuit switching network, specific,
idle inputs request interconnecting paths to specific,
idle outputs. Because of the affinity of such netwarks

37

with telephony, much has been published on this sub-
ject. Moreover, if N is the number of inputs to a con-
nector and M is the number of outputs, then when

=M, a connection assignment of all N inputs onto
all N outputs can be represented by a bijective map-
ping of the inputs onto the outputs; in other words,
the assignment is a permutation of the inputs. This
observation permits the application of a broad range
of mathematical theory to the design of connectors.
Since results for other situations follow from the
results for the case when N = M, we will discuss this
case only in the following.

It is clear that since a complete crossbar network
has one crosspoint between every input and cutput,
such a network will operate as a nonblocking connec-
tor. Hence, if we refer to an Ninput, N output, connec-
tion network of capacity N as an (N,N, N)-{rear-
rangeable or nonblocking) connector, an upper bound
on the number of crosspoints of such a connector is
N2, This then is a benchmark with which to compare
our subsequent reported results.

To get an information theoretical lower bound on
the order of growth of the number of crosspoints, we
can use an argument given by Shannon.’® Since there
are effectively N! assignments which must be real-
ized by an {N,N,N)-connector, and since each cross-
point in such a network effectively has two states,
opened or closed, 2 raised to the power the number of
crosspoints must be greater than or equal to N! From
Stirling’s well-known formula for the approximation
of a factorial,'¢ it follows that the asymptotic growth
of the number of crosspoints is O{NlogN). We will
now compare some designs with this information
theoretical lower bound on the number of cross-
points.

We will first consider rearrangeable connection
networks. Benes’ classic book® describes a construc-
tion which is based on Hall’s theorem!? (sometimes
called ‘‘the marriage theorem'). For a three-stage
network, the approach uses Hall’'s theorem to decom-

>OUTPUTS

Figure 7. An 8-hyperconcentrator.

38

pose the original assignment describing the mapping
of the N inputs onto the N outputs into n
subassignments. Repeating this decomposition on
the subassignments leads to a multistage connector.
The structure of such a network is explicitly shownin
Figure 8 in a three-stage form. In this form, the struc-
ture consists of the following: (1) a first stage (also
called an input stage) of r, (r; Xm)-networks, where
the n,r,=N terminals on the left (input) side of this
stage are the inputs to the overall network; (2} a last
stage (also called an output stage) of r, (mXn,)
networks where the nyr,=N terminals on the right
{output) side of this stage are the outputs to the
overall network; (3) a middle stage of m
{r, Xry)}-networks where the terminals on the input
side of this middle stage are linked to the terminalson
the output side of the input stage so that each of the
m (ry Xry)-networks in this middle stage has exactly
one link to each of the ry {n, X m)}-networks in the input
stage, and where the terminals on the output side of
this middle stage are linked to the terminals on the in-
put side of the output stage so that each of the m
(r, Xr;rnetworks in this middle stage has exactly one
link to each of the r, (m Xn,}-networks in the output
stage. It can be shown for this network® that if
m=max(n,, ny), then the result is an (N,N,N)-
connector. Note that if n,=r,=n,=r,=N"?, then the
number of crosspoints in the network is 3N%2~3N.
Moreover, it can be shown!® that the maximum
number of interconnecting paths through the net-
work which must be rearranged to satisfy a new inter-
connection request from an idle input to an idle out-
put is, in general, for such three-state structures
(max({r,,r;)—1).

Beizer,'® Joel,?* Waksman,?' and Opferman and
Tsao-Wu?? give refinements of this approach with a
decomposition which employs the repeated use of
{2X 2)-networks as the basic element of the network.
The results are constructions in which the number of
crosspoints has O(NlogN) growth with N, which by
our above discussion is the best order of growth
possible. For example, in the (N, N, N)-Waksman con-
nector, shown for the N=8 case in Figure 9, there are
4NlogN—4N+4 crosspoints in general. Benes' has
also shown that if the decomposition utilizes a
(3% 3)-network, then the number of crosspoints of
3.8NlogN crosspoints grows. It is worth noting that
an (N,N,N)-Waksman network has fewer crosspoints
than the (N X N)-network for all N>16.

It should be clear that for these networks the
number of stages, and, therefore, the number of cross-
points involved in any input-output path, often re-
ferred to as the delay, will be O(logN). For example,
the (N,N,N)}-Waksman connector has a 2logN—1
delay in this sense. This means, of course, that a
realizing state to satisfy a request can be quite com-
plex. Effectively, the use of a minimal crosspoint
design implies that a tradeoff has been accepted
resulting in fewer crosspoints at the cost of greater
control complexity and delay. Regarding this latter
point somewhat more specifically, given a request to
be satisfied by one of the above O(NlogN) connection
networks, Waksman?' and Tsao-Wu and Opferman??

COMPUTER

: Nenyr,
! INPUTS

T AR =10+ T O
L

Neny, - -
ouTRuts . -

L)

R a0 ST
-

Figure 8. A three-state interconnection network structure.

give algorithms which require O(NlogN) operations. of a straightforward argument, he showed that for
Recently, Lenfant?® has developed some control three stages of the structure of Figure 8, if m >
algorithms which take advantage of an apriori n,+n,—1, the network has nonblocking caf .bility.
knowledge of “frequently used’” requeststoalleviate Note that if n,=r,=n,=r,=N'2 then m=2N1?-1,
this control problem somewhat. However, for some and the number of crosspoints in the resulting net-

real-time applications, set-up times might still be pro-

" hibitive. Indeed, delay and set-up time perhaps repre-

sent the most serious limitation of O(NlogN) designs
of (N, N, N)-rearrangeable connectors.

There are applications where not all mappings of
the inputs to the outputs are of interest. Lawrie?* has
proposed what is referred to as an omega network for
interconnections required in the access and align-
ment of data in an array processor. The omega net-
work structure is effectively the left-hand half (in-
cluding the middle stage) of the Waksman structure

where the linking between the stages is usually in a
perfect-shuffle?® form. Clearly, not all permutations
of the inputs to the outputs can be realized. However,
Lawrie shows that the data elements of an (nXn)
matrix can be stored using a skewing schemein 2n in-
dependent memory units (each data element being
placed in only one such unit) so that, in a conflict-free
manner, rows, columns, diagonals, backward diagon-
als, and square blocks in row-major or column-major
order can be accessed and changed by an omega net-

work.
We next consider nonblocking connection net-

I3

works. The first published work regarding the con- *- R B

S DUl

struction of such networks is due to Clos.?* By means Figure 9. An (3,8 8}-Waksman connector.

June 1979

[RTTIC PR N R

39

INPUT
STAGE

work is 6N 32 —3N. 1t is easily seen that the three-
stage nonblocking Clos connector has fewer cross-
points than an (N XN)-network for N>36. Further-
more, Cantor? shows that with the Clos argument
applied recursively, a structure with O(N{logN)>%* -)
results.

Bassalygo and Pinsker?® have shown that, in-
deed, constructions for (N, N, N}-nonblocking connec-
tors do exist for which the number of crosspeints is

"X>

\//

WX >

. N\

<A Z‘X->

>

OUTPUT
STAGE

MIDDLE
. STAGE

Figure 10. (4,4,4)-Cantor network.

(PRI
\\\ l
.
T
|
-
i
1
//
”~
-
4
~
1 Sy

SAT B
Sy

STAGE STAGE

[] - - gy -
N\

Yol
~

h 4

l

Pt

~ |
-
P
~
-~
<
S
\i

7

“
RS
{

[}

3

\
!
S eee t
1
-
. -
.
.
.
.
g ~
e e

S

e

N0 LOG N+ 1
STAGE

Figure 11. Generalized model of a Cantor network.

40

O(NlogN). However, these results are non-con-
structive in the sense previously described, because
their proof of the existence of such (N, N, V)-nonblock-
ing connectors is based on a proof of the existence
(but not the construction) of an A input, N output
sparse network where each input has crosspoints be-
tween it and 12 of the N outputs and through which
any choice of one-third of the inputs can be connected
to more than two-thirds of the outputs. Such sparse
networks could be linked together (if their explicit
constructions were known) to yield an (N,N, N}-non-
blocking connector with O{NlogN) crosspoints. More
precisely, Pippenger? has recently shown that such
networks exist with 90 Nlog; N crosspoints.

The minimal known construction of an (N,N,N)
nonblocking connector has been provided by
Cantor.?"% Since this construction is considerably
different from the other connectors discussed so far,
it would be appropriate to sketch it here. Similar to
the (N,N,N)-Clos network, Cantor's network has a
multiple stage structure which is symmetric around
the middle stage. Cantor's approach is to use a par-
ticular construction technique and then consider the
number of accessible, idle terminals in the middle
stage of the resulting network relative to any idle in-
put. This number can be easily calculated in a recur-
sive manner because of the construction technigue
used. By symmetry, the number is also known
relative to any idle output. The sum of the two
numbers when compared with the total number of
idle terminals in the middle stage at any time in-
dicates that there is a common idle terminal in the
middle stage through which the idle input can be con-
nected to the idle output.

To see this in more detail, consider the graph model
of a {4,4,4)-Cantor network (shown in Figure 10).
Recall that in such a graph model the dotted lines do
not represent crosspoints but simply associate nodes
which correspond to terminals which would be linked
together in a construction. Hence, there are four
{1 X2)-networks in both the input stage and the out-
put stage; and there are four (2X2)-networks in each
of the three intermediate stages. It should be noted
also that the association of nodes between stages in
the model corresponds to the so-called perfect-
shuffle?53132 in a progressing manner. We will now
analyze the input side of the network, and by sym-
metry our observations will also hold for the output
side. On the input side, a generalization of network
modeled by Figure 11 would indicate that each of the
N inputs of the first stage is in a {1 XlogN)-network.,
This would be followed by log N stages, each stage
consisting of (N/2) logV(2 X 2) networks, where the last
of these logN stages {actually the (logN + 1)** stagein
the network) is the middle stage. Again, the perfecq
shuffle concept is used to progressively associate
nodes in the stages in the model. To further illustral
the above, Figure 12 shows the input side of d
(8,8,8)-Cantor network.

As seen from Figure 12 any input is connectableﬁ
logN intermediate terminals which are linked to tly
inputs of the logN (2X2}networks of the
stage. Using these (2X2)-networks in the

COoMPY

stage, we then see that each of the inputs of the first
stage is connectable to 2logN output terminals of the
second stage. For a given input, we will call the nodes
representing these output terminals of the (in this
case) second stage the access;ble nodes of that input.
The crucial point here is that because of the construc-
tion of the network, the number of accessible nodes of
an input increases by a factor of two each time we
move a stage closer to the middle stage. Hence, when
the middle stage is reached, the number of accessible
nodes to any input is NlogN.

But it is clear that connections that have been
previously made and are thereby existing in the net-
work at a given time will limit the actual accessibility
of any input to terminals of the middle stage. Hence,
we see that our concern must be with idle, accessible
nodes. Let us then consider the worst case along
these lines for stage i, i=1,.. ., logN +1. We will
denote the number of idle, accessible nodes of stage i
to any input as A(i). By the construction indicated in
Figure 11,

A(l) = logN.

Now, the number of accessible nodes on the output
side of the second stage is twice that of the output
side of the first stage, but note that one of these out-
put nodes can be busy because of other connections
being realized in the network. Thus,

Al2)=2A0) -1
Similarly,

ABB)=2A(2) -2
In general,

Ali+1) = 2 A(i) — 21,

Since the initial value is A(1) = logN, the following
closed form solutions for A(i) can be obtained for i>2:

Ali) = 2i~1logN — (i—1) 2i—2,
\
Hence, for any idle input, the number of idle, accessi-
ble output nodes of the middle stage is

AllogN + 1) = 2logMlogN)} ~ logN (2loeN~-1),
= %MogN.

In the worst case, of the total NlogN terminals on the
output side of the middle stage, at least NlogN—
(N—1) are idle. Of these idle terminals, at least
{1/2) NlogN can be accessed by any idleinput. Clearly,
in less than worst-case conditions, more of the idle
terminals can be accessed. By symmetry a similar
argument can be made for any idle output of the net-
work relative to the terminals on the input side of the
middle stage. Clearly, this implies that any idle input
and any idle output can be interconnected regardiess
of whatever other interconnections also exist, which
is, of course, the desired nonblocking property.

June 1979

Pippenger® has developed an algorithm for finding
an interconnecting path through a Cantor network
which requires O(logN) operations.

To determine the number of crosspoints in an
{N,N,N)-Cantor network, we note first that the input
stage has N (1 XlogN)-networks. This results in
NlogN crosspoints. Next, we note that the next
logN—1 stages (that is, all the intermediate stages
between—and excluding—the input stage and the
middle stage) each have 2NlogN crosspoints. The
same numbers hold for the output side of the middle
stage of the network. Summing the number of cross-
points on each side of the middle stage and then ad-
ding 2NlogN crosspoints for the middle stage yields

2(NlogN + (logN~1) (2 NlogN) + NlogN) =
4 N{logN)? crosspoints.

If N is a power of 2, then an (N, N, N)-Cantor network
hasless crosspoints than an (N, N, N)-Clos network for
all N>2°. A still further reduction can be made to pro-
duce Cantor networks with O(N{logN—1)?) cross-
points and two fewer stages of delay. Recently, Pip-
penger®® has slightly improved this bound on the
number of crosspoints in a Cantor construction to
16 N(logsN)y2.

\,
S NP AN
-~ Se S T . 7 N\
A A NI AN
N2) \
X X o 27 NK
ALK ~ ” ~X \
2N NN
<, -~ -
~ L N\ ,\’ -~ ,\
,Y s // - __—-"’ (
' - N ’/—

-

41

&

42

Partitioners

A partitioner is a circuit switching network which
performs the function of partitioning a set of devices
usually attached to the inputs of the network into dis-
joint subsets so that the devices within each subset
can communicate with each other over private buses.
Clearly, the most straightforward construction of a
partitioner is an (NX(N/2))-network where the de-
vices to be partitioned are attached to the N inputs.
Notice that if the outputs of the network are indis-
tinguishable in their use, the N/2 horizontal lines of
such a network can be viewed as simply N/2 indis-
tinguishable buses to be shared by the subsets of
devices. Then the function of the (N X(N/2})-network
would simply be to interconnect each of the specified
subsets of input devices to a distinct bus line, where
the specification of the input subsets could either be
according to size (if the input devices are indis-
tinguishable) or according to an exact listing of the in-
put devices (if the input devices are distinguishable).
Notice also that if the outputs were attached to
distinguishable output devices so that subsets of in-
put devices had to be connected to particular busesin
the system operation, the (N X(N/2))-network could
also realize this type of partitioning demand.

Such a complete crossbar circuit switch realization
of a partitioner, however, requires O{N?) crosspoints.
Hence, in spite of the simplicity of control, for most
systems which demand partitioning capabilities,
alternative designs which require fewer crosspoints
must be considered. Along these lines, in addition to

P99

Figure 13. Partitioning networks with indistinguishable
inputs and outputs.

Table 1.

Partitions of tive identical elements,
Partitions of Devices Number of Subsystems
(D), D). D), (D), (D)) 5
({0.0), (D), (D), (D)) 4
((D,m, (0,0), (D)) 3
({D,D.D.). (D). (0)) 3
({D,D.D), (D,0)) 2
{(D.0.D.D). (D)) 2
{D.D,D.D.D) - 1

the other issues with which we have become involved
in our consideration of circuit switching networks,
two further issues must be considered for parti-
tioners: we must establish whether or not the devices
to be partitioned are identical; we must establish
whether or not the outputs of the partitioner are to be
specified.

If the system consists of identical devices, the in-
itial formation of subsets is greatly simplified
because our concern is only with interconnecting
unspecified groups of specified sizes. If the devices
are distinguishable, for example, the devices might
be a collection of processors and memories; or if the
devices are physically identical but are used in the
processing of concurrent, asynchronous tasks so that
their states make them functionally distinguishable,
then the partitioning is clearly more demanding.

Similarly, as suggested above, the outputs must
sometimes be specified in a partitioning request. For
example, each such output can be a port to some
specific device or function, or it could be a signal or
data source required by one of the subsets of devices
in the partition. Such cases are clearly more com-
plicated torealize than those in which the outputs are
indistinguishable.

On the basis of the above, we will refer in the follow-
ing to (N distinguishable inputs, M distinguishable
outputs)-partitioners as (VD.MDj-partitioners; (M
distinguishable inputs, M indistinguishable
outputs)-partitioners as (ND,M])-partitioners; (N in-
distinguishable inputs, M distinguishable
outputs)-partitioners as (NI1,M Dj}-partitioners; and
{Nindistinguishable inputs, M indistinguishable out-
puts)-partitioners as (N1, M1)-partitioners. Further-
more, if all partitions cannot be realized by a parti-
tioner, we will indicate this by referring to the parti-
tioner as incomplete. Partitioning can also be per-
formed in a nonblocking or in a rearrangeable man-
ner. Nonblocking partitioning involves the capability
of establishing the requested interconnection of a
subset of devices without disturbing the existing
subset interconnections presently implemented by
the network. Rearrangeability implies that such
disturbances occur. Indeed, not only must paths be
rearranged, but at times the devices composing cur-
rently interconnected subsets must also be rear-
ranged. Such classification of networks will not be
stressed in the following. However, in some of the
suggested approaches to the realization of partition-
ing demands, the use of, for example, connectors will
be suggested; it will be apparent, however, that even
if, say, nonblocking connectors were used in those
situations, nonblocking partitioning will not always
result.

The simplest partitioning requirement clearly in-
volves indistinguishable inputs and indistinguish-
able outputs, In fact, for such a requirement and N
devices, a straightforward serial structure with N—1
crosspoints as shown explictly in Figure 13(a)is suffi-
cient. Note that we take advantage of the fact that
the outputs are indistinguishable to design a network
with effectively no outputs. Still simpler structures
are possible. For example, if N=5, all seven possible

COMPUTER

partitions are listed in Table 1. Then with one cross-
point and the hardwired, fixed links as shown in
Figure 13(b), all such partitions can be realized under
the assumption that each of the devices can be placed
in a subset of size 1 by the action of avoiding or ignor-
ing communication with other devices to which it
might be hardwired by means of a fixed link.

The case of (VI.MD)-partitioning adds a certain
degree of complexity to the requirements to be satis-
fied. First of all, given N input devices and M=N out-
puts, it can be seen that the total number of partitions
which can be requested is

(2¥v-1) -1 em
N 2 (N2 - ,
With Stirling’s formula,'® it can then be shown that
(2%—1) o~ %_(Nn)l"") (22N) .

So, theoretically, O(N) crosspoints are required for
the realization of an (N1,M D}-partitioner.

However, other than a complete crossbar network,
the only construction which the authors are aware of
requires O(NlogN) crosspoints. As illustrated in
Figure 14, this consists of an (N,N,N)-connector,
which we have seen can be realized with O(NlogN)
crosspoints, augmented by a series of N—1 cross-
points serially linking the inputs. The operation of
this network in providing a set of, say, k input devices
to some specified output is to simply interconnect a
set of k consecutive input devices, and then provide a
path through the (N, N,N) connector from any one of
the inputs associated with this set to the specified
output. if the (N, N, V)-connector is a Waksmanh net-
work,?! the resulting (NI, MD)-partitioner has
4NlogN—3N+3 crosspoints. A similar scheme is
possible with Benes’ 3.8Nlog/V crosspoint network.

The case of (ND, M1)-partitioners has received con-
siderable attention in the literature. Goke and Lipov-
ski** have described a construction for such parti-
tioners, which they have referred to as banyan net-
works. Figure 15 shows an example of the graph
model of an (8D,81)-banyan partitioner. In general,
the graph model of a banyan network is a Hasse
diagram of partial order in which there is an unique
path from any base to the apex, where a base (apex) is
a node with no edges incident into {out from) it.

In this figure, the bottom nodes, which represent
inputs that are assumed to be attached to the devices
to be partitioned, are the bases and the top nodes are
the apexes. Because of the generality of its definition,

"many types of networks are included in the class of
banyan networks. But those banyan networks which
are of practical interest do not usually have full parti-
tioning capabilities, so that Goke and Lipovski con-
sidered parallel and multiplexed usage of banyan net-
works to obtain a full partitioning capability. Some of
the motivations for considering banyans are that
such networks have O{NlogN) crosspoints and only
OflogN) delay. In addition, configuring the banyan
network to satisfy a device subset interconnectionre-
quest is straightforward and can be accomplished in

. June 1979

O(log\) operations, Finally, given an existing state of
a banyan network, if a new request for a subset inter-
connection is made by a subset of the idle input
devices, and if the resulting partition consisting of
the current realized subset interconnections plus the
new subset interconnection request is realizable by
the network (recall that the banyan network is an in-
complete partitioner), then the banyan can provide
the new subset interconnection request without
disturbing the existing subset interconnections.
Recently, Thompson!? has suggested the use of his
expanders as (ND,N1}-partitioners with full parti-
tioning capability. An expander is similar to a con-
nector except that it has the added interconnection
capability of allowing inputs to be interconnected to
any number of outputs, while still requiring that each
output be interconnected to at most one input.
Hence, just as an (N, N, N}-connector can realize all V!

N DISTINGUISHABLE OUTPUTS

I

(N.N.N)-CONNECTOR

see
N IDENTICAL DEVICES WITH N -1
SWITCHES BETWEEN THEM

Figure 14. (NI,ND) partitioner.

Figure 15. (8D,81)-banyan partitioner.

43

44

permutation mappings of the inputs onto the inputs,
then an (N,N,NYyexpander can realize all NN general
mappings of the inputs to the outputs. Thompson's
design is to simply attach the devices to be parti-
tioned to the outputs of one of his expanders. Since
the inputs of his expander (the outputs of the parti-
tioner) are now indistinguishable, as far as the parti-
tioner’s operation is concerned, a part of the input
side of the expander can be deleted, resulting in an
(ND, (N/2)])-partitioner with 6NlogN crosspoints.
Slight improvements to this partitioning scheme are
possible by using the {N,N,N)}-Waksman connection
as part of Thompson’'s expander or by using an
(N,N,N}-Benes connector® where N is a power of 3 and
three-way branching is used throughout.

It is also possible to use the (N,N,N)-connector
sugumented by N1 serial crosspoints on the output
side “or full partitioning capability. This is simply the
reverse of the network proposed for the (NI, ND)-par-

f;.' ' (N.N.N)-CONNECTOR 3
2

Figure 18. Complete (ND, Nl)-partitioner with 4NlogN
- 3N + 1 crosspoints.

o e g -y bl =

CONTROL UNIT

INTERCONNECTION
NETWORK

S D N T T U N U O VORI R

Figure 17. Schematic view of an SIMD computer.

titioner. Such an (ND,N}-partitioner is illustrated in
Figure 16. Such complete partitioners require
4NlogN~3N+3 crosspoints, but they do not provide
the nonblocking property. Again, a similar scheme is
possible with Benes’ 3.8 NlogN crosspoint network.

1t is also possible to construct a partitioner from an
O(NlogN) crosspoint (N,N,N)-connector with feed-
back.¥ A clear disadvantage of this design of a parti-
tioner is that the paths which serve as buses for
subset interconnection iterate around and through
the network, introducing significant delays. How-
ever, with an (N, N, N)-Cantor network, nonblocking
partitioning can be achieved.

Finally, it should be clear that (ND,MD}-par-
titioners can be realized with (M, N, N)-expanders,
where the devices to be partitioned are attached to
the outputs of the expander.

SIMD interconnectors, expanders, sorters. . .

There are still large, open areas in our circuit
switching sampler; but to fill them in would go far
beyond our page limitations. Accordingly, we will
conclude by mentioning just a few of the many other
possible designs.

For data exchanges between processing elements
in classes of computer systems having structures
referred to as single-instruction multiple-data-stream
architectures, a number of interesting interconnec-
tion patterns have been developed. Figure 17 showsa
schematic view of an SIMD-computer. The intercon-
nection netwark shown is not necessarily a separate
functional unit in an actual SIMD computer, but the
implementation of interconnection patterns is a fun-
damental aspect of SIMD-computer operation. Ac-
cordingly, these interconnection patterns can be
described in terms of single-stage interconnection
networks containing from G(N) to O{NlogN) cross-
points. These networks will be referred to as SIMD-
interconnectors.

The N inputs and the N outputs of the SIMD-
interconnectors can be considered to be attached to
the N processing elements so that, say, processing
element i can transmit data to the processing
elements i;,. . .,i;, if input i has crosspoints between
it and outputs jj,. . . j; . Since no input of the SIMD-
interconnector will have crosspoints between it and
all the outputs, to perform a data exchange between
specified pairs of processing elements, a control unit
must place the SIMD-interconnector in a sequence of
states so that the desired data exchange is ac-
complished by a series of data exchanges through in-
termediate processing elements. Clearly, for SIMD-
interconnectors, complexity of the control algorithm
and the time delay required for data exchanges are of
major significance.

The general states which the SIMD-interconnector
can assume are usually described by functions which
map the inputs onto the outputs. However, whether
or not a specific data exchange indicated by a func-
tion actually occurs in system operation depends

COMPUTER

upon whether the processing elementsinvolved arein
active or inactive states. This is determined by a
masking scheme. As for the details of these masking
schemes, suffice it to say that from our perspective,
aninactive processing element implies that the cross-
points between it and the outputs in the SIMD-
interconnector which are involved in the realization
of some function are considered to be open (that is, no
data is transmitted), whereas those crosspoints
relative to an active processing element are con-
sidered to be closed (that is, data is transmitted).
Hence, the complete data exchange indicated by a
function does not occur.

There are five principal SIMD-interconnectors
which have been discussed in the literature. These
five are all closely related; in fact, Siegel®® has shown
that they are all effectively equivalent in the sense
that each can simulate the interconnecting capa-
bilities of the others. Since SIMD-interconnectors
are discussed in a companion paper in this issue of
Computer, we will only reference, for completeness,
these five principal networks here: the shuffle-
exchange network,2>33236 which has 2N crosspoints;
the cube network,%” which has NlogN crosspoints; the
Illiac network%384! which has 4N crosspoints; the
plus-minus 2* network, 3424 which has O(NlogV

crosspoints; and the wraparound plus-minus 2* net-

work, which has O{NlogN) crosspoints.

Expanders {also referred to as generalized connec-
tion networks) have already been mentioned as cir-
cuit switching networks which realize (assuming
there are N inputs and N outputs) all NN mappings of
the inputs onto the outputs. In other words, one-to-
many assignments are permitted and the expanders
have a fanout capability. Such networks are more
powerful than connectors which realize all N! one-to-
one mappings. Indeed, it would be possible here to
present for expanders a section analogous to that on
connectors; unfortunately, only the following very
brief sketch is possible. Ofman’* originally showed
the existence of a 10NlogN crosspoint expander with
5logN delay; Pippenger improved this result by
showing the existence of a 7.6 NlogN crossppoint ex-
pander with an O{NlogN) delay; Thompson!® then
showed the existence of the same size network with
only 3.8logN delay. Recently, Pippenger,** utilizing
his existence results for concentrators and super-
concentrators, placed a lower bound of 1.9NlogN
crosspoints and an upper bound of 3.8 NlogN cross-
points on expanders with Of(logN)?} delays. Regar-
ding constructions, Masson and Jordan*’ have
shown explicit designs for O{N5"3) crosspoint net-
‘works with only three delays. Repeated decomposi-
tions using this design result in rearrangeable ex-
panders with O{N3ZjogN) crosspoints and nonblock-
ing expanders with O{N32(logN)\°88083) crosspoints.
Further work along these lines has been done by
Masson,** Hwang.*” and Asthana.*® Pippenger®®
gives a non-uniform rearrangeable expander using
feedback. It is simply constructed from two
(N,N,N)-connectors, one used specifically for feed-
back. Hence, an interconnecting path involving one
input and many (perhaps all) outputs can iterate

June 1979

~t {NGTITUTE OF
ELECTRICAL AND
TLECTRONICS

* ENGINEERS, INC.

<

OKLAHOMA CIiTY SECTION

- HOUSTON SECTION

WITH

@

1EEE COMPUTER

ACM

ASSOCIATION FOR
COMPUTING MACHINERY

J

32382333
[- -1 -
ﬁ§§§?-3§
23FgEwWE’,
ou.,E-"‘BE
—Eoosﬂ..—
ZO:o-—:nS
0863 ss]
_s=g°-!§ o
EoaE=28 Y
B SEBESSE H
seBVeocg o
xgsge2ds 4
Sp=922%¢
SE8Sg. 3 £
<0n‘3=""‘;§ g
Y m!Sﬂggg a
N R HHE £ o
“ [w .8.5-‘ P o O
Coom g ﬁiiﬁ%{aés VES
O B LOGSELEET win
S f ZTEepiBEr WES,
o] € O5fs88SCH 49%E
c © xz2332%.2 .0 ©
hau ,«_:8:‘.":-§3 (SR -
o 5538533, . 5°%
) | “‘E§:'§T,§_ V’0>~°
c ® ZSE25848 . EEC
@ & 9Z&EsS2Ses Aol
- g OB wZcnle acss
o Mg S233c.e w g
N~ o 3 SP2LE8eS & i
o sm ° '..;,8&§68" H 022
=S oo E=23878 f =
gX3:238Fe ° 3
SE8a®"E g% £ W
A G R
;.E_%:s gv T ©
gL£e3:5%0 €
328855382 5 ©
SehSEREL; £ 8
P.‘_ oeyx - -
$88525.32 . 3
g533gasge < ¥
§o§8§§50'
£5556855c8
HHHT
K 2EF =588 8
e 2§ &
wsbdez a5 9
I EX-41y £0
ma&’?’i’gm 5;
WsSW@IE
SERo00 00
0289955‘ [™
‘02*.5'5>—_‘ -
g 222E30 §§
O@Eagg’g gm
£Q_opct
c085°2 £5 % 4
o o Q
2 & 3%
o u)
\\§ £ 3ESES
G Q

Y, k&tgkleJﬁorhlﬁz[uars

s J

45

through the network up to O(NlogN) times. Clearly,
the paths through such a network are non-uniform,
but by the work of Tsao-Wu and Opferman,?? a state
realizing a total assignment can be determined with
O(NlogN) operations. Finally, Masson® has also
shown some expander constructions by using stages
of the binomial concentrators. Pippenger3? uses a
similar idea to show that O{N(logN)**}) crosspoint
expanders can be constructed if G{N{logN)") cross-
point concentrators are used. Since a connector cer-
tainly operates as a concentrator, we can therefore
use this technique to construct an O{N(logN)’) cross-
point expander by using Cantor’s O{N(logN)? cross-
point connectors. Similarly, this approach shows
that if a state satisfying a new request can be deter-
mined with Ol(logN)¥) operations for the concen-
trators, then the resulting expander requires
Ol(logN)**') operations to do the same.

Sorting is such a basic operation and so similar in
nature to connecting, that as might be expected, sort-
ing networks, or sorters, represent an area unto
themselves. The primary difference between a sorter
and a conhector is that the former is made up of com-
parater cells, which for our purposes can be con-
sidered to be analogous to {2 X 2)-networks. Hence the
control of sorters can be thought of as being dis-
tributed to each such cell. Also like nonblocking con-
nectors, there is no reason not to expect O{(Nlogh)
crosspoint designs; but, again, the minimal known
construction of a sorter, which utilizes an interesting
odd-even merging concept, is the Batcher sortert?
which has O(N(logN)?) crosspoints. However, it has
been shown* that the Batcher sorter is not minimal
for N=9,10,12, and 16, which places in suspicion the
minimality of the Batcher sorter for arbitrary N. Mar-
cus30 observes and discusses the interesting dif-
ference in the O(NlogN) growth of the computation
time of software programs that sort as compared to
this O(N{logN)?) growth of crosspoints in sorters, and
attributes the discrepancy to the adaptive nature of
the former as opposed to the fixed structure of the lat-
ter: Other significant sorter designs and studies are
due to Bose and Nelson® and Van Voorhisg®#5%; some
of Van Voorhis’ work also yields sorter designs with
the same order of growth but yet fewer crosspoints
than the Batcher sorter. -

And there are many other circuit switching net-
works and issues which our sampler could display:
cellular interconnection arrays®-’; programmable
indexing networks®$; seldom blocking networks and
connectors with finite blocking probability5®5?; time-

" division circuit switching networks and time-slot in-

terchangers®6%42; and, alas, the list could go on and
on. We will cease our presentation here with the
following comments. Much of the work which now
represents the state of the circuit switching area was
motivated by general communications-oriented prob-
lems; indeed, this still represents much of the motiva-
tion for research currently in progress. However, a
new influence on such research—which some say will
eventually be the influence—is the development of
LSI/VLSI devices to the point where very large net-
works of such devices are practical, perhaps even

STV A DN S NIV s i

unavoidable. Some type of interconnector chip could
eventually be as common in such system designs as
processor chips, memory chips, and 1/0 chips are to-
day. Before such a point is reached, however, many
questions need to be addressed, for, clearly, the ap-
plicability of a circuit switching network to a system
design is related to the details of the application. For
example, what are the generic circuit switching net-
work requirements for, say, various types of fault-
tolerant computing designs as opposed to that re-
quired for, say, various types of vector processing ar-
rays? Some preliminary investigations along these
lines have been reported 348, clearly, however, there
is a long way to go. Moreover, the treatment of such
questions seems to demand an intriguing blend of
computer science and computer engineering re-
search; for example, complexity theory and digital
systems structures are intimately related to such
considerations. It is an exciting challenge, and one
that cannot be ignored. It is only necessary to scan
the modern literature describing telecommunication,
computer/peripheral, or instrumentation complexes
to see this, forinevitably in a schematic or illustration
there will be that operationally significant box label-
ed ‘‘circuit switching network.” W

References

1. V. Benes, Mathematical Theory of Connecting Net-
works and Telephone Traffic, Academic Press, New
York, 1965.

2. K. Thurber, “Interconnection Networks—A Survey
and Assessment,”' AFIPS Conf. Proc. 1974 NCC, Vol.
43, pp. 909-919.

3. M. Marcus, “The Theory of Connecting Networks and
Their Complexity: A Review,” Proceedings of the
IEEE, Vol. 65, No. 9, Sept. 1977, pp. 1263-1271.

4. D. Knuth, The Art of Computer Programming, Vol
II1I: Sorting and Searching, Addison-Wesley, Reading,
Mass, 1973.

5. G. Masson, “Binomial Switching Networks for Con-
centration and Distribution,” IEEE Trans. Comm.,
Vol. COM-25, No. 9, Sept. 1977, pp. 873-883.

6. M. Pinsker, “On the Complexity of a Concentrator,”
Proc. 75th International Teletraffic Conference,
Stockholm, 1973, pp. 318/1-318/4.

7. N. Pippenger; *On the Complexity of Strictly Non-
blocking Concentration Networks,” IEEE Trans.
Comm., Vol. COM-22, 1974, pp. 1890-1892.

8. G. Margulis, “Explicit Construction of Concen-
trators,” translated from Problemy Peredachi Infor
matsii, Vol. 9, No. 4, 1973, pp. 71-80, and published in
Problems in Information Transmissions, Plenum
Publishing Corp., New York., 1975, pp. 325-332.

9. G. Masson, G. Gingher, and S. Nakamura, ‘‘Varia-
tions in Binomial Concentrator Designs,” in prepara-
tion.

10. L. Valiant, “On Non-linear Lower Bounds in Computa-
tional Complexity,” Proc. 7th Ann. ACM Symp. on
Theory of Computing, Albuquerque, N.M., 1975.

11. N. Pippenger, ‘‘Superconcentrators,” SIAM Jour.
Comp., Vol. 6, No. 2, Feb. 1977, pp. 298-304.

COMPUTER

12.

13.

14.

15.

16.

17.

18.
19.
20.

21.

22.

23.

24.
25.
26.
27.

28.

29,

30.

31.

P. Erdos and J. Spencer, Probabilistic Methods in
Combinatorics, Academic Press, New York, 1974.

C. Thompson, “‘Generalized Connection Networks for
Parallel Processor Intercommunication,” /EEE
Trans. Comput., Vol. C-27, No. 12, Dec. 1978, pp.
1119-1125.

J. P. Ofman, “A Universal Automaton,” Trans.
Moscow Math. Soc., Vol. 14, 1965 (translation pub-
lished by Amer. Math. Soc., Providence, R.1., 1967, pp.
200-215.

C. Shannon, *"Memory Requirements in a Telephone
Exchange.” Bell Systems Tech. J., Vol. 29, 1950, pp.
343-349.

W. Feller, An Introduction to Probability Theory and
Its Applications, Vol. 1, John Wiley and Sons, Inc.,
New York, 3rd ed. 1968.

P. Hall, **'On Representatives of Subsets,” J. London
Math. Soc., Vol. 10, pp. 26-30, 1935.

M. Paull, “‘Reswitching of Connection Networks,”
Bell System Tech. J., Vol. 41, No. 3, May 1962, pp.
833-855.

B. Beizer, “The Analysis and Synthesis of Switching
Networks,” Proceedings of Symposium on Math.
Theory of Automata, 1962, pp. 563-576.

A. Joel, Jr., “On Permutation Switching Networks,”
Bell System Tech. J., Vol. 47, No. 5, May-June 1968,
pp. 813-822.

A.Waksman, ' A Permutation Network,” JACM, Vol.
15, No. 1, Jan. 1968, pp. 159-163.

D. C. Opferman and N. T. Tsao-Wu, “On a Class of
Rearrangeable Switching Network, Part I: Control
Algorithms,” Part 11: Enumeration Studies and Fault
Diagnosis,” Bell System Tech. J., Vol. 50, No. 5, May-
June 1971, pp. 1579-1618.

J. Lenfant, "'Parallel Permutations of Data: A Benes
Network Control Algorithm for Frequently Used
Byections,” IEEE Trans. Comput., Vol. C-27, No. 7,
July 1978, pp. 637-647.

D. H. Lawrie, " Accessand Alignment of Datainan Ar-
ray Processor,” IEEE Trans. Comput., Vol. C-24, No.
12, Dec. 1975, pp. 1145-1155.

H. S. Stone, “Parallel Processing with the Perfect
Shuffle,” IEEE Trans. Comput., Vol. C-20, No. 2, Feb.
1971, pp. 153-161.

C. Clos, “A Study of Non-Blocking Switching Net-
works,” Bell System Tech.J., Vol. 32, No. 2, Mar. 1953,
Pp. 406-424.

D. G. Cantor, “On Non-Blocking Switching Net-
works,”” Networks, Vol. 1, No. 4, Winter 1971, pp.
367-371.

L. A. Bassalygo and M. S. Pinsker, *‘On the Complexi-
ty of Optimal Non-Blocking Switching Networks
Without Rearrangement,” in Problems in Information
Transmission, Plenum Publishing Corp., New York,
1973, pp. 84-87.

N. Pippenger, “On Rearrangeable and Non-Blocking
Switching Networks,” Journal of Computer and
System Science, Vol. 17, No. 4, Sept. 1978, pp. 145-162.

D. Cantor, **On Construction of Nonblocking Switch-
ing Networks,” Proc. of Symposium on Computer-
Communications Networks and Teletraffic, Polytech-
nic Institute of Brooklyn, 1972.

S. W. Golomb, “Permutations by Cutting and Shuf-
fling.” SIAM Review, Vol. 3, No. 4, Apr. 1961, pp.
293-2917.

June 1979

32.

33.

34.

35.

36.

37.

38.

39.

P. Johnson, “Congruences and Card Shuffling.”
American Mathematical Monthly, Vol. 63, No. 10,
Dec. 1956, pp. 718-719.

N. Pippenger, *“The Complexity Theory of Switching
Networks,” MIT Res. Lab. of Electronics, Rep.
TR-487, 1973.

L. Gokeand G. Lipovski, **Banyan Networks for Parti-
tioning Multiprocessor Systems,” Proc. Ist Ann. Com-
put. Architecture Conf., 1973, pp. 21-28.

H. Siegel, ‘‘Single Instruction Stream-- Multiple Data
Stream Machine Interconnection Network Design,"”
Proc. 1976 Int. Conf. on Parallel Processing, 1976, pp.
273-282.

H. J. Siegel, ** Analysis Techniques for SIMD Machine
Interconnection Networks and the Effects of Pro-
cessor Address Masks,” Proc. 1975 Sagamore Con-
ference on Parallel Processing, pp. 106-109,

K. E. Batcher, ‘“The Multi-Dimensional Access
Memory in STARAN,"” JEEE Trans. Comput., Vol.
C-26, No. 2, Feb. 1977, pp. 174-177.

G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L.
Slotnick, and R. A. Stokes, “The ILLIAC IV Com-
puter,” JEEE Trans. Comput., Vol. C-17, No. 8, Aug.
1968, pp. 746-7517.

W. J. Bouknight, S. A. Denenberg, D. E. McIntyre, J.
M. Randall, A. H. Sameh, and D. L. Slotnick, “The IL-
LIAC 1V System,” Proceedings of the IEEE, Vol. 60,
No. 4, Apr. 1972, pp. 369-388.

/ COMPUTER

PROFESSIONALS

Career Development requires careful planning’ Winter,
v and Company is a full service Employment
Consulting firm well equipped to specialize in the placement
of computer professionals Wintes, Wyman should be your
first step In planning your career
Even if you are not considering an immediate job change. your
planning begins now. The following 1s only a partial listing of
positions for which we are seeking qualified applicants.

DATA BASE SYSTEMS MANAGEMENT To $30K
Choose a vendor or consulting environment Indexed sequennal access
methods. query languages. etc IMS. IDMS. TOTAL. NOMAD. etc

LANGUAGES / COMPILER DEVELOPMENT To $38K
Consuling companies and manufacturers — 1n depth knowledge of
JOVIAL. PASCAL. PL .. FORTRAN helpful Positions alsc available
for those who wish to enter the field

OPERATING SYSTEMS To $28K
Sume exceptional positions Expenience in on hine or real time Some
microprocessor development opportunities available

DIGITAL DESIGN ENGINEERS To $35K
Ground floor opportunities in small growing companies or design major
systems for top vendors BS MSEE 2+ ywars expertence Logic and
circuit design. TTL. DTL. etc a plus

DIAGNOSTICS SPECIALISTS To $32K
North or South choose the climate and the technical environment
Supervisory positions avatlable

FIRMWARE DESIGN To $I0K +
Design and implement real-ime microprocessor systems Many Southern
locations as well as Greater Boston area

CONTACT: SALLY SILVER
(617) 235-8505

1l qualilied you are invited fo call or send your resume in com-
plete confidence Coliect calls accepted

60 Wiiliam St.
Wellesley, Mass. 02181
Phone (617) 235-8505

Reader Service Number 3

41.

42.

43.

44,

45.

46.

417.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

48

S. E. Orcutt, "Computer Organization and Algo-
rithms for Very-High Speed Computation,” Dept. of
Computer Science, Stanford University, Ph.D. Thesis,
1974.

D. L. Slotnick, W. C. Borck, and R. C. McRevnolds,
“The SOLOMON Computer,” AFIPS Conf Proc.,
FJCC, Vol. 22, 1962, pp. 97-107.

T. Feng, “Data Manipulating Functions in Parallel
Processors and Their Implementations,” IEEE
Trans. Comput., Vol. C-23, No. 3, Mar. 1974, pp.
309-318.

T. Feng, *‘Parallel Processing Characteristics and Im-
plementation of Data Manipulating Functions,”
Dept. of Electrical and Computer Engineering,
Syracuse University, RADC-TR-73, 1973.

N. Pippenger, ‘‘Generalized Connectors,” SIAM Jour.
Comp., Vol. 7, No. 4, Apr. 1978, pp. 510-514.

G. Masson and B. Jordan, “Generalized Multi-stage
Connection Networks,” Networks, Vol. 2, No. 3, Fall
1972, pp. 191-209.

G. Masson, "'Upper Bounds on Fanout in Connection
Networks,”” IEEE Trans. Circuit Theory, Vol. CT-20,
No. 3, May 1973, pp. 222-230.

F. Hwang, “Rearrangeability of Multi-connection
Three Stage Clos Networks,'* Networks, Vol. 2, No. 4,
Winter 1972, pp. 301-306.

A. Asthana, “Desigh and Control of a Three-State
Switch Matrix in the Presence of Fan-Out,” IEEE
Trans. Comput., Vol. C-27, No. 10, Oct. 1978, pp.
886-895.

K. Batcher, “Sorting Networks and Their Applica-
tions,”' AFIPS Conf. Proc., 1968 SJCC, pp. 307-314.

M. Marcus, *“New Approaches to the Analysis of Con-
necting and Sorting Networks,” MIT Res. Lab. of
Electronics, Rep. TR-486, 1972.

R. Bose ar:d R. Nelson, **A Sorting Problem,” JACM,
Vol. 9, No. 2, Apr. 1962, pp. 282-296.

D. Van Voorhis, *' A Generalization of the Divide-Sort-
Merge Strategy for Storting Networks,” Stanford
Electronics Laboratories, TR-16, 1971.

D. Van Voorhis, “Large {g.d] Sorting Networks,”
Stanford Electronics Laboratories, TR-18, 1971.

D. Van Voorhis, “Toward a Lower Bound for Sorting
Networks,” in Complexity of Computer Computa-
tions, Plenum Press, 1972.

D. Van Voorhis, ‘*An Improved Lower Bound for Sort-
ing Networks,” JEEE Trans. Comput., Vol. C-21, No.
6, June 1972, pp. 612-613.

W. Kautz, K. Levitt, and A. Waksman, "Cellular

Interconnection Arrays,” IEEE Trans. Comput., Vol.
C-17, No. 5, May 1968, pp. 443-451.

S. Bandyopadhyay. S. Basu, and A. Choudhurg, A
Cellular Permuter Array.” IEEE Trans. Comput., Vol.
C-21. No. 10, Oct. 1972, pp. 1116-1119.

K. Thurber, “Programmable Indexing Networks,”
AFIPS Conf. Proc., 1970 SJCC, pp. 51-58.

N. Pippenger, ""The Complexity of Seldom-Blocking
Networks,” Proc. 1976 Int. Conf. on Communications,
pp. (7-80-{7-12).

. M. Marcus and H. McDonald, '*The Queuing

Crossbar: A Hybrid Time-Division and Space-
Division Switching Network,"” Proc. 1969 National
Electronics Conf., pp. 605-610.

61.

62.

63.

64.

65.

66.

67.

68.

M. Marcus, "Space-Time Equivalents in Connecting
Networks,"” Proc. 1970 International Conf. on Com-
munications, pp. {35-25)-(35-31).

M. Marcus, “Designs for Time-Slot Interchangers,”
Proc. 1970 National Electronics Conf., pp. 812-817.

W. Kautz, "“The Design of Optimal Interconnection
Networks for Multiprocessor Applications,” Ar-
chitecture and Design of Digital Computers, NATO
Advanced Summer Institute, 1969.

K. Levitt and W. Kautz, 'Cellular Arrays for the Solu-
tions of Graph Problems,” CACM, Vol. 15, No.9. Sept.
1972, pp. 789-801.

K. Levitt, M. Green, and J. Goldberg, “A Study of
Data Communication Problems in a Self-Repairable
Multiprocessor,” AFIPS Conf. Proc., 1968 SJCC, pp.
515-527.

J. Goldberg, K. Levitt, and J. Wensley, *"An Organiza-
tion for a Highly Survivable Memory,”” IEEE Trans.
Comput., Vol. C-23, No. 7, July 1974, pp. 693-706.

K. Thurber and G. Masson, “Recent Advances in
Microprocessor Technology and their Impact on In-
terconnection Design in Computer Systems,” Proc.
1977 International Conf. on Communications, pp.
(46.2-216)-{46.2-220).

K. Thurber and G. Masson, Distributed Processor
Communication Architectures, D.C. Heath and Com-
pany, 1979,

Gerald M. Masson is an associate pro-
fessor of electrical engineering at The
Johns Hopkins University. His re-
search interests include fault-tolerant
computing, interconnection networks,
and computer systems design. He
received the BSEE degree in 1966 from
the Illinois Institute of Technology and
the MS and PhD degrees in electrical
engineering from Northwestern Uni-

versity in 1968 and 1971, respectively.

George C. Gingher is a control engineer
for Bethlehem Steel, where he has been
employed for over 20 years. Heisa PhD
candidate in the Electrical Engineering
Department at Johns Hopkins Univer-
sity.

Gingher received the BSEE in 1963
and the MS in applied mathematics,
both from Johns Hopkins.

Shinji Nakamuras is a PhD candidate in
the Electrical Engineering Department
at Johns Hopkins. He received a BS
and an MS in Physics in 1966 and 1969,
respectively, from Gakushuin Univer-
sity, in Tokyo. From 1969-76 he was
employed by the Mitsubishi Electric
Company. He also received an MS
degree in computer science from the
University of Ilinois at Champaign-

!
Vd
a -

Urbana in 1976 and the MSEE from The Johns Hopkins
University in 1877.

COMPUTER

-y

-

CAPACITY CALCULATION OF COMPOSITE CONCENTRATORS

SHINJI NAKAMURA AND GERALD M, MASSON
Department of Electrical Engineering
The Johns Hopkins University
Baltimore, Maryland 21218

ABSTRACT

In this paper, a capacity calculation technique is described for a
class of interconnection networks called composite concentrators. This
technique is then used to develop some capacity observations for various
concentrators of this class.

INTRODUCTION

A concentrator is a type of interconnection network having switching
elements, called crosspoints, between disjoint sets of inputs and outputs
to the network such that specified sets of inputs of some maximum size can
be interconnected to arbitrary sets of outputs of the same size {l]. More
specifically, a concentrator with N inputs and M outputs, N > M , is
said to have a capacity ¢ < M if, for any choice of K < ¢ inputs, a set
of K disjoint paths from the inputs can be established by closing cross-
points to some K outputs. It is important to note that the inputs can be
specified, but the outputs to which they are connected cannot be specified.
Clearly, if crosspoints were placed between every input and output, the
capacity would be equal to the number of outputs. (Indeed, for such a net-
work, the outputs could also be specified.) However, in general, the num-
ber of crosspoints would be prohibitively high; hence, sparser constructions
are of interest. The »roblem with which we deal in this paper is the capac-
ity calculation of a class of one-stage sparse crosspoint networks called
composite concentrators.

Preliminaries

Figure] shows three examples of one-stage (or bipartite) sparse cross-
point networks. Such networks can be expressed formally as a triplet
(I,0,R), where I is the set of inputs, 0 is the set of ocutputs, and R
is a relation detailing the crosspoint placement between the inputs and the
outputs. R can be given in the form of a graph, or as a crosspoint model
(as is done in Figure 1}, or as a set of ordered pairs where (i,j)eR if
there is a crosspoint between input i and output Jj . Regarding the
latter, we can express the network of Figure l(a) as

({1,2,3,4,s}, {a,b,c}, {(1,a),(1,c),(2,b),(3,c),!4,b),(4,c), (5,a),(5,b)}) .

Similarly, the networks of Figures 1(b) and l(c) can respectively be
expressed as

{{1,2,3,4,5,6},{a,b,c,d},{(1,a),(1,b),(2,a),(2,¢c),(3,a),(3,d),(4,b),(4,c),
(5,b), (5,d), (6,c), (6,d)})

and
({1’2l3}l{albIC}l{ (1,a),(1,b),(2,a),(2,c),{3,b), (3,c) h.

1t should be noted that the networks of Figures 1(a) and 1(b) satisfy
the implicit requirement for concentrators that the number of inputs is
greater than the number of outputs and (since the capacity must be greater
than or equal to one and all outputs must be of some use in providing
interconnecting paths from the inputs through the network) that each input
(output) can potentially be connected to at least one output (input). More
formally, we can express one-stage concentrators as triplets (I,0,u) where

1016

[P S, e M Fa b iRan ol . LA

|I|>|OI—; and where u (u-l) is a relation mapping elements of 1(0) to
subsets of O(I) corresponding to the crosspoint placement such that
w(i)¥¢ (u lio)ye) for all icl (ocO) .

1 2 3 4 5 1 2 3
—4— a 8
—4~-—~Db ~——~—#—Db
— c ——f— ¢
(AaA) (c)

r_—
Q

(B)
Figure 1

1t should also be pointed out for later reference that Figure 1(b) is
a basic binomial concentrator which we will describe as a (g)-concentrator
since the crosspoint pattern connecting the outputs to the inputs consists
of all possible (g) choices of 2 crosspoints between the inputs and the
4 outputs. In general, an (X)-concentrator has (¥)-inputs, x-outputs, y-(;)
crosspoints. 1t should also be noted that the nciwork of Figure 1l(c) is
(2)-network, but it is not a concentrator.

The concentrator of Figure 1l(a) has a capacity of 2 and the (g)-
concentrator of Figure 1(b) has a capacity of 4 . However, the capacity
of a sparse crosspoint networks which satisfies the implicit reguirements
for a concentrator is, in general, very difficult to determine, Clearly,
one way to determine the capacity is to exhaustively consider subsets of
inputs (starting with subsets of size two and progressing upwards) until a
subset is found for which there is not a one-to-onemapping of the inputs to
some subset of the outputs. However, even for networks of modest size this
is prohibitive. Hence, in this paper we will develop a much more efficient
capacity calculation technigue with which to address this problem for a
class of concentrators called composite concentrators.

lsolation Concepts

Toe develop our cagpacity calculation scheme it is nececsary that we
first define the following concepts. ’

For a concentrator expressed as (I,0,u), if u(i)sp'go for some
iel , then we will say that i is completely enclosed by 0' , or 0'
isolates i . For a given subset 0°cO , the set o0{(0') is:

ato') = {i]ieX and w(i)c0'} .

0(0") is called the isolated set of 0°' , since elements of 0(0') cannot
access any output except those which are the elements of 0' .

For all subsets O0' of O for which lO":k , we defipe an isolation

1017

number Hy to be:

Hy = max [oce")] -

10*|=x and 0'co
Finally, the isolation vector, (hl'hz""'hlol) , is determined by taking
the differences of the isolation numbers as follows:

h_=H.-H, 1<5 H =0 .
5L where :JEJO| and 0 0

k fol
Obviously jzl hj=nk , and jzl hj:Hlol=|I| .

Example 1: Consider the concentrator of Figure 1(a). By inspecting the
relation u it is seen that {a,b} isolates {2,5} , because u(2)={b}c{a,b).
and@ u(5)={a,blc{a,b} .

since |u(2)|=|u(3)]=1 but u(2)#u(3) and |u(3)|>1 for jel1,4,5) , it
follows that Hy=1 . Similarly H;=3 , and H3=5= I| . Hence the isolation
vector of this concentrator is (hl'hZ'h3)=(l'2'2) -

Capacity Calculation

We can now give the following:

Theorem 1: The capacity of a concentrator is the minimum value of c
which satisfies

c
Hc = .I hi>c ‘
i=1

where (hl,h ,...,hlol) is the isolation vector of the concentrator.

2
Proof: If ¢ is the minimum value which satisfies H.>c , then any H,
for 1<j<c 1is less than or equal to j, that is , H.<j for 1<j<c .
Therefore any subset I' of I , where |I'|=j<c . had crosspoints to a
subset O‘=igl,u(i):p and |0'|3j . Thus from Hall's Theorem (see Appendix),

any subset I‘cl of size up to and including c-1 has some subset 0°'cO
where there is a one-to~one correspondence between I' and 0' . Now from
the requirement on the concentrator that for any iel , u(i)#¢ , it follows
that for the given subset O0' , every element if0U(0') is connected at
least one element in O which is not in O' ; that is,

for all igo(0*) , u(i)n(0-0')#¢ .

Therefore for any subset I'cI up to and including size ¢, there is some
subset of 0'c0 which has one-to-one correspondence with I' . Hence the

capacity is c . 0.E.D.
Example 2: The isolation vector of the concentrator of Figure 1(a)} is
1,2,2).

H=h =1<1 while

1 =h +h2=1+2=3>2 .

H
27}
Therefore the capacity of the concentrator is 2 .

By making use of Theorem 1 it is clearly straightforward to calculate the
capacity of a concentrator when the isolation vector or the values of the
isolation numbers Hj,l:jilol , are known. But, in general, this informa-
tion is not easy to obtain. However, for some special cases, such as bi-
nomial concentrators, we can give the following.

Lerma 1: The isolation vector of a (;)—concentrator is

o} 1 x=2 x-1
((y_l).(y_l).o.-(y_l),(y_l)) .

1018

Proof: An (X)-concentrator has (;) input lines, while an (x;l)-
concentrator {which is contained in an (})-concentrator) has one less outpiit
line than the (¥)-concentrator and only *x;l) input lines. Therefore at
most (x;l) input lines are isolated by x-1 _output lines. That is H,_y
(x;l) . Now from the formula (g)=(‘;1)+(g:}) , we have that
= Xy ex-1y_ (x-

beH-n =(9-ch=ch .
By using this equation recursively the isolation vector is obtained in
descending order.

Q.E.D.
With Lemma 1, we can prove the following.

Theorem 2 (Masson [2]): The capacity of (;)-concentrator is y+2 .

Proof: Since in a concentrator, the number of inputs is always larger than
the number of outputs, it follows that x>y+2 ,

. - y+1
Froo Lemma 1 By*l (y)=y+l ,
- y+2 _x'&l
and ﬂy+2 (y) ¥ (y+2) ,
= y+1 =
Note that Hy+1-y+1<y+2< Y {y+2) Hy+2
Hence, the capacity is y+2 . Q.E.D.

Composite Concentrators

Given two one-stage sparse crosspoint networks, say, A:(Il,ol,ul)
and B:(12,0p,uy) , we define the composite one-stage sparse crosspoint as
A*B: (I3xI5,01x02,u12) or more simply (Ij5,035,u;3) where I3 is the
Cartesian product of 1) and I, and 055 is the Cartesian product of
01 and 02 . and where Uy oz 11x12+01X02 such that

u12(11i2)={u1(il)xuz(iz)}
where i,el and i,el, and “1(i1)x“2(i } is the Cartesian product of
u; (i;) and “2(i2) » The networks A and B will be referred to as the
component networks of the composite network A°B .

Example 3: Let A denote the network of Figure 1(a) and let B denote
the network of Figure 1l{c).

a: ({1,2,3,4,5), {a,b,c}, u,)
B: ({1'2'3]' (a'b'c)' “2)

1 2 3 4 5 1 2 3
a a
u b b, b
c c

Then the composite network A*B has 15 inputs and 9 outputs and a compos-
ite relation u;,

asB: ({(1,1,0,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),
(4,3):(5p1):(5:2)'(5.3)}-{(618),(anb),(a,c),(b,A),(b,b),(b,c),(c,a)
(c,b).(C.C)l.u1

2)

11 12 13

21 22 23

3] 32 33 41 42 43 51 52 53

ac

12°

ca

cc

Note that A*B is a composite concentrator. Hence if we knew the iso-
lation vector of thiscomposite concentrator, by Theorem 1 we could deter-
mine the capacity. However even though the isolation vectors of the com-
ponents are known, the isolation vector of the components is not apparent.
Hence, we will now define the concept of an isolation array with which to
address this problem,

In general, suppose that two networks P and @ have following isolation
vectors: (pP)sP2s-.+sPn) and (§3,92+.-.,95) « Then the isolation array for
the Qomposite network P+Q is an mxn array whose i row, jth column ele-
ment is equal to Pigqy - In other words, it is the following vector product
of isolation vectors:

Pl (qlnqzo---,qn)

Example 4:

1s

the isolation array for the composite network P+Q as
n outputs, the isolation array is

has

P, P9,r Py,
= | P9, Pyay

P, pmql ' quzr

L - -

- — -

1 (0,1,2) 012
2 = 024 .
2 024

For later reference, we will denote the i
m outputs and 0O has

r
h11h12h13"'h1n

hzlhzzhzs”'hzn

h _h _h

21702 23" o

1020

ceeer PIQ

seesr PO

ceves PO

The isolation array of the composite network A*B of Example 3

column element of
Then if P

row, jth
hij .

Capacity of Composite Concentrators

We will present in this section a theorem which is the basis of a ca-
pacity calculation technique for a class of composite concentrators., How-
ever, before doing this, we must first develop the concept of a smooth net-
work.

, We will define a network, say, P: (I,0,u) to be smooth if, given the
network's isolation numbers H ,H2,...,H ol ¢ there exists a seguence of
lol subsets of 0 , denoted as 01,02,...,0101 ., where

01C02C03C .o .COI 0|

and I g(0.) I =H, .
3 3

Example 5: The concentrator of Figure 1l(a) (for which H =1,H2=3, and HsS5)

is smooth as can be seen by examining 0.={b}, 0_={b,c} ,"and 03=la,b,éa

since o({bh)={2}, o({b,ch={2,3,4},0({a;b,c)) =°{1,2,3,4,5} .

Finally, we will define an m(n)=partition of an integer ¢ to be a
partition of ¢ into m integer parts, rj,r3,...,rp, such that
r1+r2+...+rgp=c, 0<rj<n, and rj>ry for i<j . We can now state the followong:

Theorem 3: Given the isolation array of the composite network P+Q where
the isolation vector of P is (pj,...,pP,) and the isolation vector of @
is (91""'qn) and at least one of these two component networks is smooth,
then the capacity of P*Q is given by the minimum value of c¢ which satisfies

max r r2 m
over all m(n)-partitions (Z h, + I h2 toat I hm y>c .
of ¢ j=1 73 =1) =1 b}

The proof of Theorem 3 will be omitted in this version of this paper
because of its length (3],

It should be noted that the complexity of calculating the capacity of
a P*Q composite concentrator by repeatedly using Theorem 3 for increasing
values of ¢ can be shown to be 0(N3/2) [531.

partition which satisfies Theorem 3 is: 3,3,0 . Hence, for the composite
concentrator A*B, we have that ¢=6 . 1t should also be noted that using
Theorem 3 repeatedly by starting with c¢=1 and programming to c¢=6 results
in a consideration of 15 partitions.

'
1
|
Example 6: For the composite concentrator A*B of Example 3, the 3(3)- f
sy i
i

Capacity Observations

Using Theorem 3, a wide variety of interesting capacity observations
can be made. For example, a P*Q composite concentrator where P is a
(y)~concentrator and Q is a (X)-concentrator is called a (3)(?)-
concentrator. Formulas for the capacity in terms of the parameters u,v,x,
and y for all cases of interest are listed in Table 1 and shown graphically
in Figures 2(a)-2(d).

Higher dimensional composite concentrators can also be considered. For
example, we can determine the capacity of a (g)(g)(g)-concentrator, or more
simply, a (3)3-concentrator using a 3-dimensional isolation matrix. Simi-
larly (2)“-concentratoxs can be considered. Table 2 gives the capacity of
(3)"-concentxators for 1<n<B , x>4 ,

Finally, Figure 3 shows a 3 dimensional isolation array for (g)(g)(X)-
concentrators. Some rather interesting capacity observations for this 3
dimensional composite concentrator are the following: for u>4, w=4, and
y=5, €=79; for u>2, w=5, and y=5, c=74; for u12, u>6, and y=5, c=58; and
for u>2, w>4, and y>6, c=48,

1021

(u)(x) ~ Concentrator
vy

Case 1.

2¢v&y and (:) (;Dux

R e (VP S

y=2
Case 1l.l. ukv and xky c=(v+l) (y+2)-1
Case 1.2, us=v or x=y
case 1.2.1. u=v c=v(y+4)
Case 1.2.2. x=y c=(v+4)y
Case 2. y¥2
Case 2.1, v=y
Case 2.1.1. uév+2 c=(v+l) (y+2)-1
Case 2.1.2. usv+2 c=v{y+3)
Case 2.2. vy . "
Case 2.2.,1. x=y c=uy :::i:u: ::d :_i)>vy
Case 2.2.2. x=y+1
Case 2.2.2.1. 2y>v(v+l) c=(v+2) (y+1)
Case 2.2.2.2. 2y4v (v+l) c={v+2) (y+1)-1
Case 2.2.3. x=y+2
Case 2.2.3.1. 2vny c=(v+l) (y+2)-1
Case 2.2.3.2. 2vey c=v{y+2)
Case 2.2.4. x2y+3
Case 2.2.4.1. 2v>y c=v(y+3)
Case 2.2.4.2. 2vey c=v(y+2)
Table)
u Xy Lol u, X%)
(v)(y) Concentrator 24v£y and (v)(y)>ux :
§
!
Case 1. y=2
: { Case 1.2.2, x=y
(7) (v+d)y
2
4]
2 Case].]1. u¥v and xky
) (v+1) (y+2)-1 (@)
4
(2)
&) npuuuuN -
5 121212 - - - cCase 1.2.1.. v(ys4)
2 .3 4 .5 .6 7 8B 9

QRN NEG) "

27727727727 2 2

Figure

2

X, ...
)

Case 2. y»2

Case 2.]. v=y

v+4
€y

v+3
¢ v) viy+3)
v+2 Case 2.]).1

(v } (v+]) (y+2))

v+] -1
ch

Case 2,).2.

)

v

v, (vl V2. vild vid L™y ...
() Ce 0.0 -) -

. v v
Case 2. y#2 (continued)
Case 2.2. v=Yy
Case 2.2.1. x=Yy
uy where (::1)>vy

(u case 2.2.2.). x=y+] and 2y»v(v+])
v) (v+2) (y+1)

i Case 2.2.2.2. x=y+l and 2yév(v+i)
: (v+2) (y+1)-1
' (c)
(v+4) Case 2.2.3.1. x=y+2 and 2vdy
i3 (v+1) (y+2)-1
()
v
(v+2)
v Case 2.2.4.) x>y+3 and 2v)y
) viy+3)
v
v
(v)
Yy y+l, y+2 y+3) y+4 L. (x) L
(y)(y)(y)(y(y) v
)
. Case 2.2.3.2, x=y+2 and 2vey
. and
. Case 2.2.4.2, x2y+3 and 2véy (a)
2 viy+2)
v
! ‘v+1)
v
5)
! v 3
] vy Y+l y42, y#3, ¥4, L L X)L L
(y) { y M y) y) y) v

Figure 2 [(continrued)

1023

o

n 1 2 3 4 5 6 7 8

capacity

4 11 32 96 286 | 826 |2588 | 7762
: Table 2
ACKNOWLEDGMENT

The concept of a composite concentrator was first described by the
authors and Mr. George C. Gingher in [1]. The authors wish to acknowledge
useful discussion with Mr. Gingher regarding this topic,

REFERENCES

{1) G. M. Masson, G. C. Gingher, and S. Nakamura, "A Sampler of Circuit
Switching Networks, Computex, Vol. 12, No. 6, pp. 32-48, June, 1979.

[2) G. M. Masson, "Binomial Switching Networks for Concentration and Dis-
tribution,® IEEE Trans. Comm.,, Vol. COM-25, No. 9, pp. 873-883, Sept.,
1977..

[3) S. Nakamura and G. M. Masson, “Capacity Calculation for a Class of
Composite Concentrators,” Johns Hopkins University, Electrical
Engineering Report 79-9, 1979,

{4) P. Hall, "On Representatives of Subsets," J. london Math. Soc., Vol. 10

pp. 26-30, 1935,

[S) E. M. Wright, Partitions of Multipartite Number into Xk Parts, J. Reine

Angew. Math., Vol. 216, pp. 101-112, 1964.

APPENDIX
Hall's Theorem [4]:

Any set of inputs I' , I1'cl , has a one-to-one corresponsence with
some output set 0'cO if and only if for any subset I"cI' we have that

Juam |>f1] .

1024

[T S P -

o /0 /o /o
e

o /o /o /6 f4 fe0 S20
7
|/)/0/0/2/8/;/°Z70/
o /o /0o /o /o S0 0 /o

0 [¢] 0 0 (o} 0 0 0

Vo
MI’IIIII’

ST T T TT
P TS TS
STV,
ST T TS T J ST
W TIIILI IS

o4 0 o T

1025

Abstract

A concentrator is a type of interconnection
network which can provide disjoint paths by means
of closing switches (usually called crosspoints)
from any specified set of inputs to the network
(where this input set has cardinality less than or
equal to some number called the capacity) to some
arbitrary set of outputs of the same size. In
this paper, we consider the calculation of the
capacity of a class of concentrators called com~
posite concentrators. Composite concentrators are
one-stage interconnection networks with sparse
crosspoint patterns between the inputs and outputs
where this total crosspoint pattern is determined
from the crosspoint patterns of smaller, component
concentrators which have the so~called binomial
crosspoint pattern.

Introduction

A concentrator is a type of interconnection
network which can provide disjoint paths from any
specified set of inputs to the network (where thig
input set has cardinality less than or equal to
some number called the capacity) t< some arbitrary
set of outputs of the same size, Tte crucial
iimitation of this type of intercosZection network
is that the output set to which the specified in-
puts can be connected cannot be arbitrarily speci-
fi1ed. Indeed, the assignment of a given input to
a particular output is often not possible. For
example Figure 1 shows a design of one-stage, six
input, four output concentrator. In this design
an “x" represents a crosspoint between input and

1 2 3 4 5 6
L
¥t 1 a
oo |

¥ s b
L | .
i

i IL { i

. —— a

FIGURE 1

output lines indicating that there can be a con-
nection between the lines. Note that the input
set (1,2} can be connected to any one of the out~
put sets <{a,b} , {a,c} , or {b,c} . But it is
clear that there is no means of connecting {1,2)
to, say, {a,d} . Hence, there is limited access to
the outputs from the inputs. Nevertheless, it will
be shown later that this concentrator, called a
binomial (%)-concentrator (since the network's
coiumn crosspoint vattern displays exactly once
every possible combination of placing two cross~
points on the four rows), can connect any four {or
fewer] 1inputs to some output set of the same size,

HIGHER ORDER COMPOSITE CONCENTRATORS

Shinji Nakamura and Gerald M. Masson
Department of Electrical Engineering
The Johns Hopkins University
Baltimore, Maryland 21218

Hence, this network has a capacity of 4.

Sparse crosspoint placement in a one-stage net-
work to provide a maximum capacity is the main topic
of this paper., More particularly, we will consider
an extension of the binomial design method for con-
centrators. The binomial (3)—concenttatot and its
associated capacity were first discussed in (1) and
{2]. An extension of this design, the composite
binomial concentrator, was discussed in [2) and [3].
In this paper, a further extension of this design,
called a higher order binomial composite concentra-
tor, is consideregd.

Preliminaries

A one-stage concentrator can be defined as a
triplet (I,0,r), where I is the input set, 0 1is
the output set, and r is the crosspoint placement
relation between I and O. For the example of
Figure 1, 1=~={1,2,3,4,5,6} ,0={a,b,c,d}, ang
r={(1,a), (1,b) , (2,a), (2,¢), (3,a), (3,d), (4,D),
(4,¢) , (5,b) , (5,d) , (6,c) , (6,d)} . r can be
expressed by a graph as well as by a crosspoint
diagram as shown in Figure 1, When only a conveni-
ent summary of the properties of a concentrator need
be expressed, another triplet of numbers {|1},]0},c)
where |[I| is the number of inputs, |0] is the
number of outputs, and ¢ is the capacity of the
concentrator can be used. Recall that the network
has capacity ¢ if any k inputs, k £¢, ¢an be
connected to some Kk outputs using k of the
crosspoints. For the concentrator of Figure 1,
this triplet is (6,4,4) .

A binomial (3)-concentrator is a one~stage
concentrator having (3) inputs, u outputs, and
where each of the (§) inputs has r crosspoints
to a unique choice of v of the u outputs,

A composite concentrator Cx Cp= (I1;xI,,
01x03 , r13) of two component networks C. =
(Il'ol'rl) and C, = (I,,0,,r,) is a oné-stage
concentrator where IjxI, and le 0, are
Cartesian products, and r12 is the crosspoint
placement relation between I,xI and 0,x0, which
: X 1702 1772

is defined as

rligig) = (rl(il) x rz(iz)) f

for 1,el; and i eI, . Figure 2 shows a
(3) (3)-composite concentrator which was composed
from a (3)-concentrator and a (%)-concentrater.
Higher order concentrators, Cl XCy X.e. xCp, . are
defined in a similar manner.

Isolation Arrays

For an input i€l of a single concentrator
(I,0,x) ,r(i) is the set of outputs to which i
has crosspoints and is therefore capable of being
connected. Hence, without all the outputs of r(i),
the input i is isolated from the outputs. Looking
at this from the output side, for any subset 0' of
the outputs 0O, the issue is what set of inputs are
isolated by 0' . We will express such a subset of
inputs as o(0') ., Hence c(0') is

0(0*) ~{ijiel and =x(i)co'}.

i

% —
Aj‘..
2

‘ L7
A

(g)-concentratcr

%_._L oo

S -

(__. - — | ——

|
i
i

X -3

—1 %
Ak
:

3

1?‘1‘{‘—*

(;)(:)-composite concentrator

FIGURE 2

Now for all subsets of outputs of size k, we
define the isolation number Hy as:

- max lao*y] .
k ©0'c0D and [0'| =k

That is, the isoclation number is the maximum size
of all the isolation sets which are isolated by

any output set of size k . With isolation numbers,
we can define an isolation vector as:

s = (hl'hzl.."hlol }

, for 1<3<f{0] and H) is zero.
A higher order isolation array for composite
concentrators is defined by the array multiplica-
tion of isoiation vectors. To begin, the two di-
mensional isolation array of two isoclation vectors,
say, §; and S, is obtained from ordinary vector
multiplication. More generally, the elements of a
mth order isolation array of m vectors
Sy %XS3 *... xSy are defined by products such as:

wnere h, = H -H,
3 J -

h, | . 1.2 i m
3,340-23_ = h R ...h. J..h .
oI DU P A U

where h} is the j‘th
3 i

j element of the Si iso-

lation vector.

Capacity Calculation

The capacity of a concentrator cah be calcu-
lated by means of its isolation vector.

Theorem 1 [3]: The capacity of a concentrator is
the minimum value of ¢ which satisfies

c
H, = .Z hi > ey
i=]l
where (hl'hzr‘--'hlo]) is the isolation vector of
the concentrator,

For a binomial (3)-concen:zator, the isolation
vector can be shown to be [3}:

Q 1 u-2 u~1l
((v~l) ' (v—l) y oo '(v-l) . (v~1)) .
This leads simply to:

Theorem 2 (2], [3): The capacity of (J)-concentra~
tor is v+2 ,

This can be extended to second order, binomi-
al, (3)(:)-concentrators as follows:

Theorem 3: The capacity of a binomial ({) (¥)-
concentrator is the minimum value of ¢ which sat-
isfies

c
Z hij >e¢c,

where the summation is over ¢ of the hij‘s '

where if hij is in the summation, then all
hee's.k<i and L¢3, are also in the summation,

For the special class of a second order bi-
nomial (Vtz)(vgz)-concent:atoz or, more simply, a
(V;)“-concentrator the isolation array is the two
dimensional array shown in Figure 3, Now, the sum-
mation of h..'s up to i

i) P and including h(v+l),(v+1)

satisfying the ordering required by Theorem 3 yields
a sum which is equal to the number of elements
added. That is,

.

T T ot

- ag——

——

& ——

Theorem 5: The capacity ¢ of a n®h order (Y)n-
concentrator is bounded as follows:

n n-3 2
(vtl) " <c xve(vel) (v+#2} for wu=v+2 and n>3,
(ve1)P <c <ve (v¢1)7-2(v+3) for u>v+3 and n>2 .
Proof: Part 1: (v+¢1)P<C

For the two dimensional isolation array case,
the maximum sum of (v+1)2 elements satisfying the
ordering required by Theorem 4 can be shown to be

v+l v+l 2

h, . = (v+¢l)" ,

i=) j=1 I

. . th . .
This generalizes tOo the N order isolation

array case where it can be shown that the maximum

sum of (v+1)N elements is

v+l vl v+l
SO N VR R 7S S L
Jlgl j2=l jnzl 31]2-.-Jn

Now, this Part of the proof will be completed if
it can be shown that there is no way of choosing
m< (v+1)? elements which sum to more than m .
To show this, it will first be convenient to sim-
plify the notation. We will therefore write the
isolation vector

T PP bt P Sl S PR SR AY PR Mk PE i S PR

VIR, vinth, L0
more simply as

(0,000,0,1,v,h s huveash _1ihoel)

Using this, the two dimensional isolation array can
be given as shown in Figure 5.

(v+2)
—
| 040ees0, 0, O, o, Oseees Orees
. | .
C,yeee 0, 0, 0., o, O¢gevesr Dsoen
lol-oo + 0, 1, v hzr h3,-o. Ihnl°"
Q0,e0e,0, v, vz, vhz, vh3, ""thr"'
0,600.00, hy, Vvhy, h%v h2h3,.-.,h2hn,-..
o ©, hns Yhpe hohe hahge <se s b2, ees
* ves ¢ ’ ne nt 2%n 3pr eee '

Fiqure S

Clearly (and as indicated in Figure 5}, the minimum
number of elements that must be summed to include
hy in the summation is

ve (v+2) = vz +2v < (v*l)z .

Moreover, this is the only possible selection of
less than (v+1)2 elements that sums up to more
than (v+1) . Hence, SO as not to exceed v (v+2) ,
h, must be such that

1¢v¢h2 _<_v(v~2) =v2+2v -

Similarly, for higher order cases,

l+veh_ +h_+,,,+h < v1+1v2-1 .
2 3 i-
Noting thnat
- (V+i
1¢V*h24‘h3*...+hi (v)
and that
(vzi) - (v+1)(V*i:...(v+1) < v e aviT? s

We can conclude that there are not m< (v+1)? ele-
ments of the isolation array that will sum to more
than m . Hence (v#1)P < ¢,

Part 2:
ccvevr)® 2 (ve2)? for usve2 and 23 (a)

and n=2
C LVe(v4l) (v+3) for wu>v+3 and n2>2 (b}

These two inequalities can be proven by show=-
ing that there always exists a set of m elements
which sums to more than m when m is equal to
ve (vr1) M3 (v42)2 o ve (v41)072 (v43) respectively,
Considering (b) of Part 2 first, we have previously
shown that in the two-dimensional case that there
exists vs(v+3) elemepts satisfying the subscript
ordering requirement that sum to more than ve(v+3)},
Now, to go to higher dimensional isclation arrays,
consider the first v+l elements of the isolation
vector

(0,0 400e,0,1,v,e0e) &
} v+l v%
These first v+l elements clearly sum to v+l &0
as we expand to higher dimensional arrays (h>3),
it is clear that we can choose for each additional
dimention (v+1) times the number of elements of
the previous dimension which sum to (v+l) times
the previous sum., 1In other words, for the nth order
case, if we select v« (v+1)P <(v+3) elements,
hjlj2"'jn » where 1<j,<v, 1<j,<(v+3}) , and
13, 5(v+1) , 3<k<n , it follows that they will sum

to more than ve (v+1)72(v+3) .

Considering next (a) of Part 2, it is easily
seen that for the three dimensional case, the ele-
ment R j) -

ents hJlJZJs ' lgjliy ' 15;ki(v+2) ¢ k=2,3 , sum
to more than v(v+2)2 , Then, similar to the argu-
ment for (b), expanding to higher dimensions will
maintain this unedquality since the number of ele-
ments and the sum increase by a factor of (v+l)

for each new dimension. In other words, for the ath
order case, if we select v s (v+1)P~ (v+2)2 ele~
ments, h, . . where 1<j_<v , 1<j <(v+2)

' 3y3pe-e3, ’ RS RAGE A ’
k=2,3 , and 1:jl§y*1 s 4<2<n , it follows that
they will sum to more than ve(v4l)f=3(v+2)2 |

Q.E.D.

Beyond the capacity bounds of Theorem 5 for
(g) -concentrators, an essentially similar argument
to that of Theorem 4 yields the exact capacity for
sufficiently large n ., This result is stated with-
out proof as

Theorem 6: The capacity of (J)"-concentrator for
sufficiently large n is *

vivel)P3we2)? - (M52)es for umve2

vive)™ 2(ved) - v(neS) for u>wved .

0 (0,....0,l.v,-;.v(w1)) ’—o oo O o} 0 0
4] = 0...0 1 v 21!:ll
1 . 2
0...0 v v? Yolved)
v i
2 2 2
1 v(v+l) vi{vel) v (v+l)
- + mtmm———— ——tt——— e
3 viv+l) 0...0 3 3 ry
Fiqure 3
L =N
i’“o ees 0 0 o 0 0 0
| . N
£ 0.0 0) 0 o 0
!
! v(v+l) viv+l) (v+2)
; 0eea @ 0 1 v — —_—
f 2 v3(v+1) v (vel) (ve2)
10...0 0 v v R rlvell el
b oo o v (v+1) v2 (val) v (va1)? v (ve1) 2 (v42)
} sew '—'—2 2 4 ~ lz
0.0 o v(v4l) (v42) vZ(vel) (v42) v2 (1) 2 (v+2) viwa 2 wezf]
L '’ 6 6 12 36
Figure 4

v+l v+l
I n,.
iz1 j=1 2

= l¢v+v+v2 = (v+1)2 ’

and this is the maximum value of any summation of

(v#1)2 terms in the allowable adding order. The
next nonzero element, h s is v elements
v, (v+2)
away with a separation of v-1 2eros. But
v (v+l)
b, ve2y = T2 >V
Thus,
v+l v+l Py 2
hij = (v+l)T < (v+l) T +v = (v41) (v42) -1
i=1 j=1
< (v+1)? +"—(—‘2’—*—“— .

Therefore from Theorem 3, the capacity of the (V;Z)g
concentrator is (v+l) (v+2)-1l. Similarly, the
isolation array for the (V;3)2-concentrator is
shown in Figure 4. The maximum summation of
v»{v+3) elements of the isolation array satisfy-
ing the required ordering is

v v+3 R
Z Z hi‘ = 14ve V(;+L) + V(V+i)(v¢2) > v(v+3)
i=1 j=1 3 .
While for v > 3
1 E VEJ
vived) > = v(vel) +1 = h.. =h .
2 iel iml ij v, {(v+3)

Therefore from Theorem 3, for v> 3, the capacity
of (V}3)2-concentrator 1s v{v+3] ,

Since it is easily seen that any (Y¥)Z-concen-
trator with u>v+3 has an isolation array in
which the isolation array of (V}3)2-concentrator is
embedded, it can be concluded that the capacity of
any (3)2—concentrator with v>3 and u>v+3 is
vi{ved) .

Extensions to Higher Orders

Theorem 3 can be extended to the nth order bi~
nomial concentrator case as follows.

Theorem 4: The capacity of an nth order binomial
ul) (U uny - ; L.
(vi)(vg)"'(v:) concentrator is the minimum value
of ¢ which satisfies
c
h, . . > c
33320043,

where the summation is over ¢ of the h

where if hklkz"‘kn

all h

Lo . 's
3132"'Jn
is in the summation, then

« : R
'S T) s , 1<i<n ki > li , are also in
172 n

the summation.

In general the number of summations of h's
which satisfy the conditions of Theorem 4 is pro-
portional to an exponential function of ¢ . There-
fore, exhaustively examining all of them to find
the minimal is impractical. Fortunately, for bi-
nomial (3)“-concent2ators, capacity formulas for
sufficiently large n can be obtained,

Third Order Concentrators

The capacity of the general class of (U)(¥)

(§)-concentrators is worth considering as it dem-
onstrates how the capacities of composite concen-

trators vary according to the parameters of the
component concentrators (which in this case are
u,v,w,x,¥, and z). Accordingly, Figure 5 gives
capacity of some () (%) (§)-concentrators. Each
these capacities was galculated with a program
that examines O0(vxz®) summations of elements

the
of

of

the three dimensional isolation array (all of which
satisfy, of course, the subscript ordering require-

ment of Theorem 4).

(g)/ /120/ 72760/

{1}

(2]

3}

48

- S e e v-«—ﬂmmm

References
—_—irEs

G. M. Masson, G. C. Gingher, and S. Nakamura,
"A Sampler of Circuit Switching Networks,
Computer, Vol. 12, No. 6, pp. 32-48, June,
1979,

G. M. Masson, “"Binomial Switching Networks
for Concentration and Distribution," IEEE
Trans. Comm., Vol. COM-25, No. 9, pp. B73-
883, September, 1977. :

S. Nakamura and G. M. Masson, “Capacity
Calculation of Composite Concentrators,”
Proceedings of the Seventeenth Annual Aller-
ton Conference on Communication, Control, and
Computing, pp. 1016~1025, October, 1979,

(19
2 G @ S D

&

9
Q)

FIGURE 6

Yy
—_— (4)

Proceedings of the 1980 IEEE International Conference on Circuits and Computers.

ON THE DESIGN OF CONCENTRATOR NETWORKS

Gerald M, Masson and Shinji Nakamura
Department of Electrical Engineering
The Johns Hopkins University
Baltimore, Maryland 21218

ABSTRACT

An (N,M,C)-concentrator is an interconnection
network with N inputs, M outputs (M<N) where
for any specified subset of C<M dinputs, each of
the inputs can simultaneously be connected by means
of a disjoint path to some output. In this paper
we consider concentrator design from the point of
view of (i) lower bounds on the number of switch-
ing elements called crosspoints needed to imple~
ment a one-stage concentrator, and (ii) the place~
ment of these crosspoints on a crossbar grid to
produce sparse crossbar networks which function as
concentrators. More particularly, we show minimal
crosspoint designs for the special full capacity
cases where M=C ., With a new lower crosspoint
bound that we derive for general N, M, and C, we
show that the so~called binomial network is amini-
mal concentrator design, and we consider the
near-minimality of composite binomial designs.
Finally, we use our derived lower bound to show
that Pippenger's construction for a N input-

N output superconcentrator, which recursively uses
concentrators as network components, requires at
least 17.0625N crosspoints.

INTRODUCTION

An (N,M,C)~concentrator network is an inter-
connection network with N inputs and M outputs
(M<N) where for any specified subset of C<M
inputs, each of the inputs can simultaneously be
connected by means of a disjoint path to some out-
put. C is referred to as the capacity of the
concentrator [1]-([6). The crucial limitation of
the connecting capability of this type of intercon~
nection network is that given a specified set of
inputs, in order to simultaneously connect each
input in this set of an output, the outputs cannot
in general be arbitrarily specified (as would be
the case in a permutation network}.

Concentrators are becoming increasingly impor-
tant in distributed computing systems requiring the
estahlishment of disjoint communication paths be-
tween a subset of a large set of not necessarily
identical devices and a smaller set of identical
devices. For example, suppose that each input was
connected to a terminal device and each cutput was
connected to a computing device. At any one time,
up to C users could each be at some subset of the
N terminal devices, each requesting a connection
to & computing device, Clearly, since all the com~
puting devices are identical, it would not matter
which computing device was connected to each termi-
nal device. Concentratars satisfy this type of
interconnection requirement.

The actual connectjons of inputs to outputs
in a concentrator are accomplished by means of a
switch mechanism referred to as a crosspoint. The
detailed implementation of an actual crosspoint is,
of course, application dependent. In the following
a crosspoint can simply be considered to be a
switching element when "closed" provides a connect-
ing path between the line entering it and the line
leaving it, as opposed to when it is “"open™ and no
such connecting path exists between these two lines.

A concentrator is called a one~stage concen-
trator if it is reaslized in the form of a so-called
crossbar network where between any input and any
output there is at most one crosspoint, In the
foilowing it should be understood that we will be
concerned only with one~stage concentrators. Ob-
viously, a complete crassbar network in which there
is a crosspoint between each of the N inputs and
M outputs can operate as a (N,M,M)~concentrator.
However, since NM crosspoints is usually a prohibi=~
tively high number, we will consider sparse cross-
bar networks in which there is at least one input
and output between which there is no crosspoint.
Clearly, the number of crosspoints and their place~
ment are the crucial issues relative to the capa-
bilities of sparse crossbar networks. Accordingly,
our concern in the following will be with the total
number of crosspoints and specifications of the out-
puts to which each input has crosspoints or, equiva-
lently, specifications of the inputs to which each
output has crosspoints on a crossbar grid such that
the resulting network functions as a (N,H,c)-'
concentrator. Such specifications will be referred
to as a design of that concentrator.

Preliminaries

In order to consider sparse crossbar networks
as concentrator designs, we will need the following
notation and definitions, Any one-stage crossbar
network can be described as a triplet (1,0,R),
where I is the input set, |I|«N, O is the out-
put set, |0l =M, an@ R is a relation between I
and O where for itl and oeO,o0¢cR({i) implies
there exists a crosspoint between input i and out-
put o, This will at times be expressed in the
following by the statement that input i is incident
to output o, or, equivalently, that output o is
incident to input i. R can graphically be
expressed as a crosspoint diagram such as that shown
in Figure 1. In this figure, (which will later be
identified as a (3)—netw0rk) I={1,2,3,4,5,6} ,
0={a,b,c,d}, and” R(1) = (a,b} , R(2} ={a,c} , R(3) =
{a,d} , R(4) = (b,c}, R(5} = {b,d)} , R(6) = {c,2) . An
"x” on the grid between input 4 and output o
implies that oeR(i) .

Inputs

7 —:
b
¢ Outputs
»* 4
Fig. 1. A (})-network.

A particular network design wil “erred
to often in the following, If 1= N} ;
and 12 R({1) is the set of all poss. es of
of s1ze v of the elements of 0O={ ' and
R{1) #R(J) for all i#Jj , then the iing
sparse crossbar network is called a t t-
work or, in this case, a (v)-netwo:k. 4i.s
[(2)-1'\0:\00!)(. It can be shown (3] tiL 3=

network is a design of a (6,4,4)~conce:

A subnetwork of the network describ.

{1,0,R} is simply a network described b
(1*,0',R') where 1'e1, 0'co,
R'CR ,

The isolation set , o(Q') , of a subset 0'cQO
of a network described by (I,O,R) is the subset
I'cI consisting of inputs incident to outputs
only in Q' . ‘That is,

0(0') = {ij[iex and R(i) cO'}..

Full Capacity Concentrators

An (N,M,C)-concentrator where C=M is called
a full capacity concentrator. The following is a
necessary condition on designs of full capacity
concentrators.

Theorem 1l: The minimal number of crosspoints
required in the design of an (N,M,M)-concentrator
is (N-M+1)M,

Proof: Assume that some output, say, 0c¢0 of a
design of an (N,M,M)-concentrator wae incident to
N-M inputs. This means there are N-(N-M)=N
inputs with no crosspoints to o . But, clearly
this contradicts the assumption that this design
functions as a (N,M,M)-concentrator, since these
M inputs only have crosspoints, and, therefore,
can be connected to, at most M-1 outputs,
Hence, in a (N,M,M)~concentrator design, each out-
put must be incident to at least N-M+1 inputs,
This results in a total of at least (N-M+1)M
crosspoints in any design. Q.E.D.

Designs of (N,M,M)-concentrators having exactly
this minimal required number of crosspoints can be
given, Clearly, in such designs, the placement of
these (N-M+1)M crosspoints must be such that for
any choice of M of the N inputs, all subsets
of size M'<M of these chosen M inputs must
collectively be incident to a total of at least M’
outputs. Figures 2(a) and 2(b) give two designs
of a (6,4,4)-concentrator satisfying this condition
and having the minimal number of 12 crosspoints.
These two designs can obviously be generalized for
any (N,M,M)-concentrators, It should be noted that

these designs are non-isomorphic in the sense that
one cannot be transformed into the other by row/
column permutations.

| N

Nt
ralaral

(a) (b)
T™wo designs of a (6,4,4)~concentrator.

A

Fig., 2.

In addition to the two designs of Figure 2,
for certain values of N and M , other non-
isomorphic designs of full capacity concentrators
can be given. We have already stated that the
binomial (a)-netvork of Figure 1 was a design of a
(6,4,4) concentrator [3]. Note that this design
has the minimal number of 12 crosspoints. More
generally, for all v>2, (V*2)-networks are de-
signs of ((V}2) , v+2,v+2)-concentrators (3]. It is
clear that these designs have the minimal number of
crosspoints since

((VE2) = (v+2) +1) - (ve2)ave (V$2)

In some cases a subnetwork of a (V§?)-network
can be determined which is a design of a minimal
full capacity concentrator. It can be shown that
a (V}d)-network is & design of a [(V}3), ve3, ve2)=
concentrator [3). For certain choices of v, by
deleting inputs from such a network, minimal de-
signs for full capacity concentrators with v+3
outputs can result., For example, Figure 3(a) shows
a (g)-ne:uork which is a design of a (20,6,5)~
concentrator. Now, by deleting the inputs 1,2,6,9,
10,13,14,16,17, and 18 (where the input numbering
is from left to right), the network of Figure 3(b)

”,_H_. EREBN
FRRRE
* *

N
gl

W5

Loama)

(a) (b)

Fig. 3 (a). A (g)-network which is a design for
a (20,6,5)-concentrator;

(b). a design for a (10,6,6)-concentrator.
results. It can be shown that this resulting net-
work is a design of a (10,6,6)~network. Moreover,
it can be shown that there are at least 144 ways to
delete 10 inputs of the (g)~netwozk to produce non=
isomorphic minimal designs of a (10,6,6)}concentrator.

Finally, the number of non-isomorphic minimal
designs of a full capacity (N,M,M)-concentrator for
any N and M is an open question. Clearly, Wwe
could always £ind at least two. We will see in the
£ollowing sections that for the more general (N,M,C)
concentrators, M>C, this is not necessarily the case.

A Lower Bound for (N,M,C)-Concentrators

In the previous section, we showed minimal de-
signs of (N,M,C)-concentrators for the special case
where M=C, In this section we will give a new
lower bound on the number of crosspoints required
in any (N,M,C)-concentrator, M2C, It will be seen

that in some cases designs satisfying this lower
bound can be given.

Consider any design of a (N,M,C)-concentrator.
Assume that this design contains Nx crosspoints,
where x is the average number of crosspoints for

input. That is, on the average, each input is in-
cident to x outputs. In the sparse crossbar
network corresponding to this design, it should be
clear that, since the network by assumption has
capacity C, any choice of C of the M outputs,
say, O' defines a subnetwork relative to the in-
puts in the isolation set, 0(0') , which functions
as a full capacity concentrator, Let {0),02,...,
Oég)} be the (E) possible choices of output sets
of"size C. Consider o0(0y), i-l,...,(g), and let
Sy be the sum of the number of outputs incident
to each of the inputs in 0(04) . Since the inputs
of 0(04) are by definition isolated by ©0j , we
can write that

s, = 1 IR | &

j_co(oi)

It should be clear that S; is the total number
of crosspoints between the inputs of o(0j) and
the outputs of O; .« As the original network was a
design for an (N,M,C)-concentrator, it follows that
each of these subnetworks must each be a design for
a (|o(03)],c,C)~concentrator i-l,...,(g) . So, by
Theorem 1, for all isl,..., (),

ooy |-cryec < s, (1)

Summing over all (M) choices of output sets of size
C,and dividing by (M) yields

#h @
T doopl-csne L5y (2)
151 Jim

& - @

It should be noted here that (2) is a necessary
condition for (1). That is, if {2) is not satis-~
fied, then there must be at least one O3§ such that
(1) does not hold and, therefore, the original net-

work could not provide a capacity of C. Now, (2)
can be rewritten as
M M
) (C)
121 [otop)] 121 s,
(M - C+l)C < —T— .
© @ {3)

Consider now the following term from the left-
hand-side of (3):

1)
1 o t,) |
im1

@)

Clearly, this term is the average number of inputs
isolated by an output set of size C in this
(N,M,C)-concentrator design. An equivalent expres-
sion to (3) can be obtained as follows. Recall
that each input is incident on the average to x
autputs in the design. Hence, the probability that
an input is isolated by C of the M outputs is

€,61, . Cx1, (5)
M M-l M-x+1

Since there are N inputs, it follows that the
average number of inputs isolated by an output set
of size-C is

cC C-1 C-x+1
— § — * ——— . 6
¢ M-1 b H—xtl) N (6
M
Hence, (({) |U(O)I
i -
2 S - - Y o L2 T)
(E) M M-l M-x+1
Consider next the right-hand-side of (3).
The term M
(c)
I s
im !
[t 8

is the average number of crosspoints in the design
between a set of inputs isolated by C outputs and
those outputs, Using (6) and, again, that there are
on the average x crosspoints per input in the
design, it follows that

)

sy

i=1 c. C-1 C-x+1

M T SR T T i
(¢)

Using (7) and (9) in (2), rearranging, and
combining terms allows us to state the following:

Theorem 2: A lower bound on the number of cross-
poeints in any design of a (N,M,C)-concentrator is
Nx where x satisfies

C C=1 C-x+1 2
(i MLttt m) N°* (C-x)+C~C " =0 , (10)

Observe by Theorem 2 that, as should be
expected for the full capacity concentration case
where C=M, (10) is satisfied by

(N=M+1) *M
x N

which agrees with Theorem 1.

Observe next that for the general binomial
design of a (3)-network for a ((3),u,v+2)-
concentrator where N= () ,M=u, and C=v+2, (10)
is satisfied by x=v . Hence, we have the new
result that binomial networks are minimal designs.
This is stated formally as

Corollary 1: (3)-networks are minimal designs of
({¥) , u, v+#2)-concentrators.

We can also use Theorem 2 as a benchmark to
compare candidate designs of (N,M,C)-concentrators.
Designs with Nx' crosspoints where x' is "close”
to the value of x which satisfies (10) are at
times acceptable for those cases when no design
with Nx crosspoints is known, For example, con-

sider the composite binomial network of Figure 4.
This design is obtained by taking a (5)-necwork as
shown in Figure 1 and replacing every crosspoint

*—

1

¥

X R RGN AR
Fig. 4. A (3)2-network.

with another (g)-network together with the proper
input and output expansion. The resulting net-
work, in this case, is called a (g) -network; and
it can be shown that it is_a designofa (36,16,11)
concentrator [4). The (2) -network has Nx's=
(36)+(4)=144 crosspoints, From (10), we find that
x=2,548; therefore Nxw=91.733,

Linear Concentrators and Superconcentrators,

A (Nk,Mk,Ck)-concentrator for given N,M, and C
is called a linear concentrator since the number
of inputs, outputs, and the capacity grow linearly
with k. Linear concentrators have been used as
network components to prove the existence of cer-
tain superconcentrator designs (5], [6]. A super-
concentrator is an interconnection network of some-
what more powerful connecting capability than that
of a concentrator in the sense that in a super-
concentrator there are N inputs and N outputs and
for any specified subsets of K<N inputs and out-
puts, there exists a disjoint path to connhect each
input to some output in the respective subsets.
Hence, unlike a concentrator, for a superconcentra-
tor both the input and output subsets to be con-
nected can be specified and they can be of any size
less than or equal to N. However, within these
subsets the particular one-to-one connections cannot
be specified. Pippenger [6] proved the existence
of superconcentrators with at most 40N crosspoints
This proof was based upon a recursive construction
using (6k, 4k, 3k)concentrators which Pippenger proved
existed with at most 36k crosspoints. In this
section, we will establish a lower bound on the
number of crosspoints in superconcentrator designs
using Pippenger construction. This will be accom~
plished by establishing lower bounds on crosspoints
for the linear concentrators it utilizes.

To begin, consider the more general case of
(Nk,Mx,Ck)-concentrators. For this case, an ap-
proximation to (10) of Theorem 2 for sufficiently
large Xk is

(:—E)"- {NK) * (Ck-x) #Ck=C2k2 = 0 . (1)

Now, upon rearranging (11) and dividing by kz,
we can consider the limit of the result as k ap-
proaches infinity. That is,

2
lim .k~ C.x 2 k. C.x
xoa {30) oNC=CT) = 5D Nx-C)} = 0 . (12)
k k
Clearly, (12) converges to
(;‘:-)"-Nc-c2 «0. (13

Taking logarithms yields

- logN-1logC
x Tog M- 10gC ° (14)
Equation (14) represents a lower bound on the
average number of crosspoints in any (Nk,Mk,Ck)-
concentrator design for large k.

Returning then to the issue of Pippenger's
superconcentrator cosstruction which was based on
the recursive use of (6k,4k,3k)-concentrators with
6 crosspoints per input, it is seen from (14) that
a lower bound on the number of crosspoints per in-
put for such linear concentrators is x=2.40942.,
when (6k,4k,3k)-concentrators with (2.40942)-(6k}
crosspoints are used in Pippenger's superconcen=
trator construction, it can be seen that a lower
bound on the number of crosspoints in the result-
ing superconcentrator is 17.4565N.

It is of interest to consider alternative lin-~
emar concentrators because Pippenger's superconcen=
trator construction only requires the use of con-
centrators where the capacity is equal to one-half
the number of inputs, but the ratio between the
number of inputs and outputs has some flexibility.
Let 8 correspond to this ratio in the sense that
we will consider (2 ,8n, .}h)=concentrators. Now,
from (14),

n
logR-losy g2 (15)

log Bn-log%- log 2+1log B

then the number of crosspoints in Pippinger's con-
struction can be expressed as

log 2
log 2+ 1log 8
where %- <g<l,

Numerical analysis shows that (16) is mini-
mized when B=0,70251. From (15),, this results in
x=2.03835. Then, if (n,0.70251n,5n)~concentrators
with 2.03835n crosspoints were used with Pippenger's
construction, the result would be a lower bound of
17.0652N crosspoints. No design of a superconcen~
trator using Pippenger's construction could have
less crosspoints.

X =

ne (2 +1) If'i . Qe

References

1. M. Pinsker, *On the Complexity of a Concentra-
tor,"™ Proc. 75th Internatiomal Teletraffic Conference
Stockholm, 1973, pp.318/1-318/4.

2. N. Pippenger, “On the Complexity of Strictly Non=
blocking Concentration Networks," IEEE Trans.Comm.,
vol. COM-22, 1974, pp. 1890-1892.

3. G. Masson, "Binomial Switching Networks for Con~
centration and Distribution,” IEEE Trans. Comm. ,Vol.
COM-25, No.9, 1977. pp. 873-883.

4. S. Nakamura and G. Masson, "Higher Order Compos-
ite Concentrators," Proc. l4th Ann, Conf. on Infor~
mation Sciences and Systems, 1980.

§. L. Valiant, "On Non-linear Lower Bounds in Com~
putational Complexity,” Proc. 7th Ann. ACM Svmp. on
Theory of Computing, Albuguerque, N,M., 1975,

6. N. Pippenger, "Superconcentrators," SIAM Jour.
Comp., Vol. 6, No. 2, 1977, 00, 298-304.

LOWER BOUNDS ON CROSSPOINTS IN CONCENTRATORS AND SUPERCONCENTRATORS

Shinji Nakamura and Gerald M. Masson
Department of Electrical Engineering
The Johns Hopkinrs University
Baltimore, Maryland 21218

Abstract

Lower bounds on the required number of
crosspoints in realizations of interconnection
networks called concentrators and superconcen-
trators are given. This work is in contrast to
many of the other results in the literature which
establish upper bounds by proving that with a
certain number of crosspoints, various concen-
trator designs do exist. The lower bounds are
obtained by using a straightforward necessary
condition on the number of crosspoints for the
special case of sparse crossbar full capacity
concentrators. It is seen that this condition
flust be satisfied by all embedded full capacity
concentrators contained in more general concen-
trator designs, and on the basis of this obser-
vation, a general necessary condition on the
required number of crosspoints in a concentrator
is established. This general crosspoint condi-
tion is exploited to obtain our lower bound re-
sults by demonstrating that an equal distribution
of a given number of crosspoints between inputs
and outputs in a sparse crossbar concentrator is
the most efficient use of those crosspoints rela-
tive to maximizing the resulting capacity. As
the use of sparse crossbar concentrators as com~
ponents in the designs of other types of inter-
connection networks is common, our lower bound
results can also be used to obtain lower bounds
on crosspoints in those interconnection network
designs as well. In particular Pinsker's multi-
stage concentrators and Pippenger's superconcen=~
trators are considered in this paper.

Introduction

An (n,m,c)-concentrator is an interconnec-
tion network with n inputs and m outputs
(m<n) where for an specified subset of c<m
inputs, all of the specified inputs can simul-
taneously be connected by means of disjoint
paths to some set of ¢ outputs, ¢ is referred
to as the capacity of the concentrator. The
crucial limitation of the connecting capability
of this type of interconnection network is that
given a specified set of inputs, in order to
simyltaneously connect each input in this set to
an output, the outputs cannot in general be
arbitrarily specified (as would be the case in a
permutation network).

The actual connections of inputs to outputs
in a concentrator are achieved by means of
switching elements referred to as crosgspoints.
The detailed implementation of an actual cross-
point is, of course, application dependent. 1In
the following, a crosspoint can simply be viewed
as a switching element which when “closed" pro-
vides a connecting path between the line enter-
ing it and the line leaving it, as opposed to
when it is "open" and no such connecting path

exists between these two lines.

A specification of the crosspoint place-
ment between the inputs and outputs will be
referred tp as a design or explicit construction
of a concentrator, Clearly, the simplest design
of a concentrator is in the form of a so-called
(sparse or complete) crossbar network, where be-
tween any input and any output there is at most
one crosspoint. Concentrators can also be
realized by designs in the form of composite net-
works. These are made up of various serial and
parallel combinations of sparse or complete
crossbar concentrators., Initially in this paper
we will be concerned with only the sparse cross-
bar concentrator realizations, but, in the con-
cluding sections, we will consider composite net~
works as well,

Obviously, a complete crossbar network in
which there is a crosspoint between each of the
n inputs and m outputs will function as an
(n,m,m)-concentrator. This special case where
c=m Wwill be referred to as a full capacity con-
centrator and will henceforth be denoted more
simply as an-(n,m)-concentrator. Similarly, a
sparse crossbar network in which there are cross-
peints from each input to any c<m outputs will
function as an (n,m,¢)~concentrator. However, as
might be anticipated on the basis of the rela-
tively small number of input to output mappings
that must be realized by a concentrator, the nm
and nc resulting crosspoints, respectively, for
each of these¢ cases are usually unnecessarily
high. Indeed, it is well established that
{n,m,c)-concentrators and (n,m)-concentrators can
be constructed with 0(n) crosspoints. For
example, Pinsker [1] has shown that (n,m)~
concentrators can be constructed with at most
29n crosspoints. This was accomplished by means
of a probabilistic argument that demonstrated the
existence (but not the explicit crosspoint place-
ment) of some sparse crossbar concentrators that
are components in a composite concentrator net-
work. Similarly, Pippenger [2] used a similar
argument to show the existence of sparse crossbar
designs of (n, £n, an)~concentrators with at
most 6n crosspdints. These were then used as
components in a composite design of an intercon-~
nection network called a superconcentrator, These
types of results provide upper bounds on the total
number of crosspoints required in the design of
the associated concentrator.

There also have been contributions regarding
explicit constructions of concentrators, Most

notably, Gabber and Galil [3] have recently given
a construction of a sparse crossbar concentrator
which was first studied by Margulis [4) and which
furthermore permits an explicit construction of a

superconcentrator in the form of the composite
network suggested by Pippenger. Masson [5) also
gave a construction of a sparse crossbar concen-
trator with what is referred to as a binomial
crosspoint placement.

In this paper, we will be concerned with
both the minimum number of crosspoints required
in (n,m,c) and (n,m)-concentrators and some ex-
plicit constructions. Regarding the former, we
will establish lower bounds for sparse crossbar
concentrator designs. With these results, we
will then be able to examine some explicit sparse
crossbar constructions, seeing in some cases
(for example, Masson's binomial concentrator)
that these designs are, indeed, minimum. Finally,
we will be able to determine lower bounds on the
composite network realizations of concentrators
given by Pinsker and superconcentrators given
by Pippenger.

Preliminaries

To consider sparse crossbar networks as
concentrator designs, we will use the following
notation and definitions. Any sparse crossbar
network, denoted in general as N, can be
described as a triplet (I,O,R), where I is the
input set, |I| =n; 0 isthe output set, 0| =m;
and R is a relation between I and O where for
iel and o0e0 , oecR(i) implies there exists
a crosspoint between input i and output o .
This will at times be expressed in the following
by the statement that input i is incident to
output o, or, equivalently, that output o is
incident to input i.

A subnetwork, N' , of the sparse crossbhar
network, N , described by (I,0,R) is simply a
network described by (I',0',R') where I'c1,
0'co, and R'cR. -

The isolation set, 0(0') , of a subset
0' €0 of a sparse network described by (I,0,R)
is the subset I'cI consisting of inputs inci-
dent to outputs only in O' . That is,

0(0') = {ili ¢ T and R(i) < 0'} .

The total number of crosspoints between the
inputs of 0(0') and the outputs of 0O' will
be denoted as t' , It is clear that

t'= 7 IRt3H] .
jeo(o")

We will at times in the following consider
concentrator designs where the explicit cross-
point placement is not specified, but, instead,
only the crosspoint distribution of the design
is given. W(j) will denote the number of inputs
in a sparse crossbar network that are incident
to exactly j outputs. In the discrete case,

W(i) = {{i{ie1 and [Rei}|=34}]

and
m
I WiiY=n.
=1

This latter crosspoint distribution and any other
such distribution where each input is incident

to exactly the same number of outputs will be
referred to in the following as a l-point or
singular crosspoint distribution. Moure generally
an {-point crosspoint distribution is one in
which there is a set of £ distinct incidence
values, J={3;,32ss.0,3¢} + such that

w({j) ¥ o jeda,

w(j) = o jfa.

)i ¥ jk for all]i and Jk in J , i¥%¥ k,

and where 2
je3 W({j) = n .

Full Capacity Sparse Crossbar Concentrators

The following is a necessary condition on
the number of crosspoints in designs of full
capacity concentrators.

Theorem 1: The minimum number of crosspoints
required in a sparse crossbar design of an (n,m)-
concentrator is (n-m+l)m .

Proof: Assume that some output, say oeO of
a sparse crossbar design of an (n,m)-concentratar

was incident to n-m inputs. This means there

are n-(n-m) =m inputs with no crosspoints to

© . But, clearly this contradicts the assumption
that this design functions as a (n,m)~concentra-
tor, since these m inputs only have crosspoints
to, and, therefore, can be connected to, at most
m-1 outputs. Hence, in a sparse crossbar (n,m)-
concentrator design, each output must be inciden:
to at least n-m+1 inputs. This results in a
total of at least (n-m+1l)m crosspoints in

any design. 0.E.D.

A Lower Bound for Sparse Crossbar (n,m,c)-
Concentrators

In the previous section, we showed minimum
sparse crossbar designs of (n,m,c)-concentrators
for the special case where m=c. In this sec~
tion we will give a lower bound on the number of
crosspoints required in any sparse crossbar
{n,m,c)-concentrator, c<m . It will be seen in
the following section that in some cases designs
satisfying this lower bound can be given.

Consider any sparse crossbar design of an
{n,m,c)~-concentrator, Assume that this design
contains nx, crosspoints, where x, is the
incidence mean of the design. That is, ignoring
for the moment that in general x, is not an
integer, each input, on the average, is incident
to x, outputs., In this sparse crossbar net-
work, since by assumption the capacity is ¢ ,
any choice of ¢ of the m outputs, say, O' ,
defines a subnetwork relative to the inputs in
the isolation set, 0(0') , which must function
as a full capacity concentrator. Let {0;,0;,
...,0(2)} be the (E) possible choices of out-

put sets of size ¢ . Consider c(oi), i=l,e0.,
(@ . It follows that

(loto) |-c+lree < ¢, . b))

tailiiions

Summing over all (@) choices of output setvs of
size ¢, and dividing by () yields

m
@ (§3)
.£1(°(°i)l 121 £
— - ctlle < T (2)
@ @

Recall that W(j) is the number of inputs
in a sparse crossbar network that are incident
to exactly j outputs. Now suppose that a given
input is incident to j outputs. It follows
that of the (%) possible selections of ¢ of
the m outputs, exactly (2:) of those choices
isolate this input, It is furthermore easily
seen that

&) .
M3y o (P g o (SN
e = (@ @ ST

(j)

Por convenience in the following, we will
let

)
9(3) = -
™)
3
so that
@3 = Qe .

With the above and the crosspoint distribution,
it follows that

) m
§ lotopl =] @a)wG) ,
i=1 j=1
or m
®
I ot m
i=1 =] g(3)ewis .
m <
) j=1

Simlarly, it can be seen that

@

T ot

i=p * T

e =] g3 Wil .
m N

(c) j=1

Using the above in (2) and rearranging terms
yields the crosspoint distribution form of our
necessary condition on sparse crossbar designs
of (n,m,c)-concentrators:

? 2

T (g(3) W (3o tc=3))~c“ + c <0 . (3)

j=1

To obtain our lower bound, we now must con-

sider all possible crosspoint distributions that
satisfy (3) for sparse crossbar designs of
{n,m,c)-concentrators. For all practical pur-
poses this task would be impossible were it not
for an intuitively satisfying property of cross-
point distributions that reflects itself into

the summation terms of (3). Given some fixed
number of crosspoints, say, nx , x<¢, which are

to be placed between the n inputs and m out-
puts of a crossbar grid so as to provide the
maximum possible capacity, there is a natural
tendency, because of analogies which can be made
with other physical phenomena, to in general con-
sider crosspoint distributions that evenly dis-~
tribyte the crosspoints among the inputs. In
other words, intuitively one would expect to be
able to maximize the capacity with a singular
crosspoint distribution. Indeed, if we ignore
the fact that x in general is not an integer,
this turns out to be the proper approach, and
this is demonstrated rigorously in {7]. Hence
we can conclude that to obtain our lower bound
on the total number of crosspoints required in
sparse crossbar designs of (n,m,c)-concentrators
from our necessary condition as given by (3), it
is only necessary to consider the singular cross-
point distribution case. This will be formally
stated as

Theorem 2: A lower bound on the number of
crosspoints in a sparse crossbar design of an
(n,m,c)-concentrator is nx where x satisfies

c

X_ opefe-x)-cl+ce0 . (4)

m
()

Binomial Networks

An obvious question raised by the lower
bound equation of Theorem 2 is whether or not
sparse crossbar designs actually satisfying the
equation exist. It can be seen that when the
values of the parameters n, m, and c satisfy
certain binomial interrelationships, this is the
case. More particularly, an (T)-network has (J)
inputs, m outputs, and a singular crosspoint
distribution wherein each input is incident to
v outputs, Moreover in such a network, for any
input, the placement of the v crosspoints be-
tween it and the outputs is distinct from that of
any other input. The capacity of such a design
is known to be v+2 ([5]. Substituting n=(]),
x=v,and c=v +2 into the left-hand side of
(4) yields

(v+2
V' . (My.(ve2-v) = (v+2)2 + (v+2)
™ v

= w o (2) - (V+2)24‘ (v+2) =0

In other words, x=v satisfies (4) relative to

((5),m,v#Z)-concentrators, and binomial networks
are, therefore, minimum sparse crossbar designs

of such concentrators.

Fixed Ratio Concentrators

For given integers n, m, and c, an (nk,mk,ck)~

concentrator will be referred to as a fixed ratio
concentrator since, although the number of inputs,
outputs, and the capacity vary according to k.,
their ratios remain fixed. For fixed ratio con-
centrators, we can again use (4) to determine a
lower bound on the average number of crosspoints
in their sparse crossbar designs. For this case

with sufficiently large k, it is easy to see
that our lower bound equation (4) can be approxi-
mated as x

(%) "enk (ck-x) -cki+ck=0 ,

oy x X
1R ac-c) -x(© mx-cr=0 .

Dividing through by k2 and taking the limit as
k approaches infinity yields

1im X2 ¢ * 2. x,c* e
kw('_z'((ﬁ) snc-c¢)-—2-((;) enx-c))=0,
k k
or
c, X 2
(l-n-) nc~c =0,
Taking logarithms, we have

x= {logn -logc) /{logm~-1loge) . (s)

Equation (5) represents a lower bound on the
average number of crosspoints in any sparse
crossbar design of an (nk,mk,ck)-concentrator
for large k .

Pinsker's Concentrators

In this section we will give lower bounds
on some of the prominent composite networks for
concentrators., These composite networks use
sparse crossbar networks as their building blocks
or components, and, hence, their lower bounds
will be based primarily upon the results of the
previous sections on sparse crossbar concentra-
tors. To axpidite the presentation of these
results (as well as the results of the follow-
ing section), we will first develop some nota-
tion to describe composite networks.

Given two (sparse crossbar or composite)
networks N; and N; where Nj has an input set
I, and, an output set O; , and where Ny has an
input set 1, and an output set Oy, [01]=]I5],
then N; =N, will denote the serial product of
N; and Nz and will represent a composite net~
work h:ving I, for an input set and 0, for an
output set, and where the output of Ny and the
inputs of N, are identified or associated on a
one-to-one basis,

Given two (sparse crossbar or composite)
networks N; and Ny where [11"“1 and |01|=
m; and where }12[= n; ana Ozl-mz,then
Njla,b!N2 , where a<min(n},nz) , b<min(m,m,)
will denote the parallel product of N; and ?Nz
and will represent a composite network having
nj+ng-a inputs formed from 1I; u I but where
the "lower” a inputs of N; and the "upper” a
inputs of N, are superimposed so as to have
paths to the outputs available either through Ny
or Ny, and having m)+my-b outputs formed from
01 U O3 but where the "lower"™ b outputs on Nj
and the "upper"™ b outputs of N, are superim-
posed.

Given a network N, then N will denote the
inverse of that network where the inputs of N
are used as outputs and vice-versa.

Finally, we will let Iy, denote the n input,
n output sparse crossbar network with cross-

points only on the main diagonal.

g ol

l-_: R

= L
N\

-&---o.___———- Ny n-m iz
.

f:;---i______/ T

figure 1: A compopsite {(n,m)-concentrator.

Now, consider the composite network shown
in Figure 1. This composite network was first
presented by Pinsker [1]. It can be shown (1]
that if

Nl is an (2(n-m) , n-m) -~ concentrator,
N2 is an (m,n-m) - concentrator,
and 2m >n,

then this composite network is an (n,m) concen-
trator. Clearly, this network can be described
as -
- N, = .
Im|(n m) , m)(1 N,)

Pinsker used a composite network of this type to
show that in general (n,m)-concentrators existed
with at most 29n crosspoints. This was accom-
plished by considering in particular a composite
network design of an (n,.?.n }~concentrator as
described by 6

1 5 —
I, lgn.grloy = N,)
=n
6 —
where (N =>Nj) is a composite design in which:

(i) Ny is a (ln ’ i,)=-concentrator in the form
of the comﬁositg network

(Ny3 = Npp)

in which N;; is a (-]*n, -:.‘;n ’ én)—fixed

ratio concentrator afid Nj, i$ En, 1n)-
concentrator (which it should be néted has
an input set, output set, and capacity equal

to T that of the overall concentrator);

(ii) Ny is a (in ’ -!'-n)=concentrator in the form
of the composite network
Ny = Ny = Ny
in which N33 is a (3.n,Lln)-fixea ratio
concentrator, N32 is®a 8dn, %.n , in)-
fixed ratio concentrator, and N33 i€ a

Jp———

(ln ’ 1n)— concentrator (which, again, it should
bé noted has an input set, output set, and capa-
city equal to T that of the overall concentrator).

Pinsker's design is clearly recursive.
Hence, using (5) for the component fixed ratio
concentrators, we have that a lower bound on the
number of crosspoints in N;; and Npy is

, les}-logg
sn(1 1)8 1.26726n

log 3 log 3
and that a lower bound on the number of cross-
points in N33 is

5 1°‘3%' 1°9%
20— %) = 1.93494n.

log 3" log -6—
Thus, a lower bound on the number of crosspoints
in Pinsker's composite design of a (n, %n)-
concentrator is

(2n) +1.93494n + 2(1.26726)

+ {lower bound for a Pinsker
t1n, ln)-concentrator). (6)

Recursive evaluation (6) yields a lower bound on
the number of crosspoints in a Pinsker (n, >nj-
concentrator to be 7.4491n. Pinsker, it should
be noted, showed with his design the existence
of (n, gn)-concentrators with at most 22n
crosspolnts.

Now, with the design for (n, é-n)-concentra-
tors, Pinsker considered (n ,;)-concentrators for
l<a<n. This was done by considering ranges of
a . We will likewise consider our lower bound
over these ranges. Figure 2 shows a graph of
k versus a where kn is our lower bound on
pinsker (n, 3) ~concentrators.

%

7 4
[/
5 4
¢ S A N R 1 a
1 2 3 4 H 6
rigu-e 2. Lower bound on Pinsker's (n,%) -concentrator.

Rang> (i) 1 <a:£: In this range, the above
(n , 5 n)-concentrator is used by simply designing

. 6
this network to have the correct number of -;1

outputs and then scaling down the number of
inputs appropriately. Hence, in this range, the
lower bound on_the number of crosspoints in
Pinsker's (n, 3) -concentrator is (7.4491) (g . 2
Range (ii) %i‘ < 3 : 1In this range, Pinsker
usesaf_he serial product of a fixed ratio

(n,¥ 3, z)-concentrator and a (2 g ,-;1)-
concentrator. Hence, in this ranae our lower

bound on the number of crosspoints in Pinsker's
{n , 3)- concentrator is

—32098 .4 (7.a001 28
log L + log a 5a

5a
Range (iii) 3 <a<n: This range is treated
by Pinsker as a set of subranges. In each sub-
range, his design consists of an initial serial
product of fixed ratio concentrators to reduce
the required concentration to that which can be
addressed by a concentrator in range (ii). A
serial product of that initial composite network
is then taken with the appropriate concentrator
from range (ii) to complete the design. For
example, for the subrange 3 < a < T a serial
product of a fixed ratio (m,2n ,B)-concentrator
and an (Zn, —g~)~concentrator3with a design from
range (il) is used. Hence, our lower bound on
crosspoints on Pinsker's (n, %)concentrator in
this subrange is

¢ log a log a n,

a)'

)k (— }--2-n+(7.4491
1og£+1og a log -—6— +log a 3
3 Sa
: . ; 9 27 .
Likewise, in the subrange 5 < a < == ,_the
serial product of the fixed ratio (n Fn 3
concentrator and a fixed ratio (3-n, n, ;)-—
concentrator is used to bring the concentrator
into range (ii). The serial product of this

u-lm
win

n

initial network is then taken with a (in , By~
concentrator resulting in a lower boundgof a
2
log a log 3+ log a
(5 Yn+ 2) =n+
log 34- log a log §+ locg a
log %4» log a

) dn+7.aa0) &Ly L
log -6—+ log a 9 59
Sa

: 27 81 .
Similarly, the subrange =-<a <— uses the serial
product of 3 fixed ratio concentrators, namely,
an (n, %n, D)-concentrator, an (2n, 2n, -:—)-
concentratory; and an (in ¢ TTD L3 -congentrator,
to bring the concentragor into range (ii).
Hence, our lower bound curve of Pinsker's

(n, -:-) -concentrator can be obtained.

Pippenger's Superconcentrator

An (n,n)=-superconcentrator is an intercon-
nection network of somewhat more powerful con-
necting capability than that of a concentrator in
the sense that there are n inputs and n outputs
and for any specified subsets of k<n inputs
and outputs, there exists a disjoint path to con-~
nect each input to some output in the respective
subsets. Hence, unlike a concentrator, for a
superconcentrator both the input and output sub-~

sets to be connected can be specified and they
can be of any size less than or equal to n.
However, within these subsets the particular one-
to-one connections cannot be specified.

{n,n)-superconcentrators were defined by
valiant [8] and shown to exist with at most 238n
crosspoints, Pippenger later improved this bound
to 40n [2). Recently, Gabber and Gabil (3] gave
an explicit construction of an (n,n)~superconcen-
trator requiring 273 n crosspoints. We will con-
clude this paper by considering a lower bound on
Pippenger®'s superconcentrator design.

Ffigure M rippenger's (mn,n}-superconcentrator.

Consider the composite network shown in’
Figure 3, This network can be described as

xnln,nlm1 =N, = N).

Pippenger showed that if
2 1
“1 is an (n, Fne, 30) -concentrator
and

Nz is an (-;—n ’ %n)-superconcentrator,

then this composite network is an (n,n)-super-
concentrator. Hence, a lower bound on Pippengers
{n,n)-superconcentrator at this point is

; i—;g%’g—iTg?)nﬁ (lower bound on Pippenger's
{(3n,3n)-superconcentrator). Recursive evalua-
tion yields a lower bound on crosspoints in a
Pippenger (n,n)-superconcentrator as 17.4565n.

N+ 2(

The key requirement in Pigp'enger‘s design
is that N; has a capacity of Zn. but the only
requirement on the iize of the output set, say,
Bn is that 1<B<3 . Our lower bound on this
fixed ratio concentrator is

log 2)
(———‘-—109 7+ log 6 n.

This gives the number of crosspoints in Pippen-~
ger's (n,n)-superconcentrator as

log 2 y

(1 + 2(109 2 + 109 Bl
which has a minimum of 17.0652n at B=0.70251.
In this version of Pippenger's design,
{n,0.70251 n, ln)-concentrators are used, each
with an average of 2.03835 crosspoints per irput.
Pippenger®s (n,n)-superconcentrator cannot be
constructed with fewer crosspoints.

1. l ']
,.‘1'3‘ n

Conclusion ’

In this paper we have used a straightforward
requirement on the number of crosspoints in
sparse crossbar (n,m)-concentrators to obtain
lower bounds for the more general cases of (n,s,c)
concentrators. These lower bounds were attained
by means of an argument which showed that a non-
biased or singular distribution of a given num—~
ber of crosspoints between inputs and outputs in
a sparse crossbar network is the most efficient
use of those crosspoints regarding the resulting
capacity. In certain cases it was seen that the
lower bound could actually be satisfied: nanmely,
when the number of inputs, outputs, and the
capacity satisfy the so-called binomial interre-
lationships, as in such situations the singular
distribution satisfying our lower bound require-
ments is achievable with an integer number of
crosspoints per input. The use of sparse cross-
bar concentrators as components in the designs of
other types of interconnection networks permits
us to use our lower bound results to obtain lower
bounds on crosspoints in those designs as well.
In particular we considered Pinsker's multi-stage
concentrators and Pippenger's superconcentrators.

References

1. M. Pinsker, "On the Complexity of a Concen-
trator,” Proc. 75th International Teletraffic
Conference, Stockholm, 1973, pp.318/1-318/4.

2. N. Pippenger, "Superconcentrators,” SIAM
Jour. Comp., Vol. 6, No. 2, 1977, pp.298-304.

3. O. Gabber and Z. Galil, “Explicit Construc-
tions of Linear Size Superconcentrators,® to
appear in the Journmal of Computer and System
Sciences.

4. G. A. Margulis, ®"Explicit Constructions of
Concentrators,® Problems of Information Trans-
mission, Plenum, New York, 1975.

S. G. Masson, "Pinomial Switching Networks for
Concentration and Distribution,” I1EEE Trans.
Cormm., Vol, COM-25, No. 9, 1977, pp.873-8813.

6. P. Hall, "On Representatives of Subsets,®
J. london Math. Soc., Vol. 10, 1935, pp.26-30.

7. S. Nakamura, "lower Bounds and Product Designs
for Concentrators,” Ph.D. Dissertation, The Johns
Hopkins University, in preparation.

8. L. Valiant, "On Non-linear lower Bounds in
Cozputational Complexity,” Proc. 7th Ann. ACM
Syep. on Theory of Computing, Albuquergue, R.M.,
1975.

